967 resultados para LARGE-AREA
Resumo:
Over the past 150 years, Brazil has played a pioneering role in developing environmental policies and pursuing forest conservation and ecological restoration of degraded ecosystems. In particular, the Brazilian Forest Act, first drafted in 1934, has been fundamental in reducing deforestation and engaging private land owners in forest restoration initiatives. At the time of writing (December 2010), however, a proposal for major revision of the Brazilian Forest Act is under intense debate in the National Assembly, and we are deeply concerned about the outcome. On the basis of the analysis of detailed vegetation and hydrographic maps, we estimate that the proposed changes may reduce the total amount of potential areas for restoration in the Atlantic Forest by approximately 6 million hectares. As a radically different policy model, we present the Atlantic Forest Restoration Pact (AFRP), which is a group of more than 160 members that represents one of the most important and ambitious ecological restoration programs in the world. The AFRP aims to restore 15 million hectares of degraded lands in the Brazilian Atlantic Forest biome by 2050 and increase the current forest cover of the biome from 17% to at least 30%. We argue that not only should Brazilian lawmakers refrain from revising the existing Forest Law, but also greatly step up investments in the science, business, and practice of ecological restoration throughout the country, including the Atlantic Forest. The AFRP provides a template that could be adapted to other forest biomes in Brazil and to other megadiversity countries around the world.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
The application of airborne laser scanning (ALS) technologies in forest inventories has shown great potential to improve the efficiency of forest planning activities. Precise estimates, fast assessment and relatively low complexity can explain the good results in terms of efficiency. The evolution of GPS and inertial measurement technologies, as well as the observed lower assessment costs when these technologies are applied to large scale studies, can explain the increasing dissemination of ALS technologies. The observed good quality of results can be expressed by estimates of volumes and basal area with estimated error below the level of 8.4%, depending on the size of sampled area, the quantity of laser pulses per square meter and the number of control plots. This paper analyzes the potential of an ALS assessment to produce certain forest inventory statistics in plantations of cloned Eucalyptus spp with precision equal of superior to conventional methods. The statistics of interest in this case were: volume, basal area, mean height and dominant trees mean height. The ALS flight for data assessment covered two strips of approximately 2 by 20 Km, in which clouds of points were sampled in circular plots with a radius of 13 m. Plots were sampled in different parts of the strips to cover different stand ages. The clouds of points generated by the ALS assessment: overall height mean, standard error, five percentiles (height under which we can find 10%, 30%, 50%,70% and 90% of the ALS points above ground level in the cloud), and density of points above ground level in each percentile were calculated. The ALS statistics were used in regression models to estimate mean diameter, mean height, mean height of dominant trees, basal area and volume. Conventional forest inventory sample plots provided real data. For volume, an exploratory assessment involving different combinations of ALS statistics allowed for the definition of the most promising relationships and fitting tests based on well known forest biometric models. The models based on ALS statistics that produced the best results involved: the 30% percentile to estimate mean diameter (R(2)=0,88 and MQE%=0,0004); the 10% and 90% percentiles to estimate mean height (R(2)=0,94 and MQE%=0,0003); the 90% percentile to estimate dominant height (R(2)=0,96 and MQE%=0,0003); the 10% percentile and mean height of ALS points to estimate basal area (R(2)=0,92 and MQE%=0,0016); and, to estimate volume, age and the 30% and 90% percentiles (R(2)=0,95 MQE%=0,002). Among the tested forest biometric models, the best fits were provided by the modified Schumacher using age and the 90% percentile, modified Clutter using age, mean height of ALS points and the 70% percentile, and modified Buckman using age, mean height of ALS points and the 10% percentile.
Resumo:
Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha(-1) (K(1.5), K(3.0), 1(4.5, respectively) as KCl, 3.0 kmol K ha(-1) applied as K(2)SO(4), 3.0 kmol Na ha(-1) (Na(3.0)) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha(-1) (K(1.5) + Na(1.5)) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients. A positive effect of NaCl applications on the growth of E. grandis trees was observed. NaCl and KCl additions in treatments Na(3.0) and K(3.0) increased above-ground biomass by 56% and 130% three years after planting, respectively, in comparison with the C treatment. By contrast, accumulated litterfall up to age 3 years was not significantly modified. NaCl applications in the Na(3.0) treatment significantly increased Na accumulation in above-ground tree components but did not modify K accumulation, whatever the sampling age. A partial substitution of K by Na in tree physiology, as observed for various agricultural crops, might explain this behaviour. Our results suggest the possibility of applying inexpensive K fertilizers, which are less purified in Na, and explain why high yields are achieved without K fertilizer applications in areas with large dry depositions of marine aerosols. Further investigations are necessary to identify the processes involving Na in Eucalyptus tree physiology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Four new species of Anastrepha Schiner were collected in McPhail-type traps hung in trees in a natural reserve and in commercial papaya orchards in Linhares, Espirito Santo state, Brazil. They are described and named herein as follows: Anastrepha atlantica n. sp., Anastrepha glochin n. sp., Anastrepha linharensis n. sp. and Anastrepha martinsi n. sp. Only the latter was collected in traps hung in papaya orchards. The classification of these species in species groups of Anastrepha is also discussed.
Resumo:
The results presented in this paper refer to a host survey, lasting approximately three and a half years (February 2003-july 2006), undertaken in the Vale do Rio Doce Natural Reserve, a remnant area of the highly endangered Atlantic Rain Forest located in Linhares County, State of Espirito Santo, Brazil. A total of 330 fruit samples were collected from native plants, representing 248 species and 51 plant families. Myrtaceae was the most diverse family with 54 sampled species. Twenty-eight plant species, from ten families, are hosts of ten Anastrepha species and of Ceratitis capitata (Wiedemann). Among 33 associations between host plants and fruit flies, 20 constitute new records, including the records of host plants for A. fumipennis Lima and A. nascimentoi Zucchi. The findings were discussed in the light of their implications for rain forest conservation efforts and the study of evolutionary relationships between fruit flies and their hosts.
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
Understanding resource capture can help design appropriate species combinations, planting designs and management. Leaf area index (LAI) and its longevity are the most important factors defining dry matter production and thus growth and productivity. The ecophysiological modifications and yield of rubber (Hevea spp.) in an agroforestry system (AFS) with beans (Phaseolus vulgaris L.) were studied. The experiment was established in Southeast-Brazil, with three rubber cultivars: IAN 3087, RRIM 600 and RRIM 527. The AFS comprised double rows of rubber trees along with beans sown in autumn and winter seasons in 1999. There was about 50% higher rubber yield per tree in the AFS than the rubber monoculture. Trees within the AFS responded to higher solar radiation availability with higher LAI and total foliage area, allowing its greater interception. All three cultivars had higher LAI in the AFS than monoculture, reaching maximum values in the AFS between April and May of 3.17 for RRIM 527; 2.83 for RRIM 600 and 2.28 for IAN 3087. The maximum LAI values for monocrop rubber trees were: 2.65, 2.62 and 1.99, respectively, for each cultivar. Rubber production and LAI were positively correlated in both the AFS and monoculture but leaf fall of rubber trees in the AFS was delayed and total phytomass was larger. It is suggested that trees in the AFS were under exploited and could yield more without compromising their life cycle if the tapping system was intensified. This shows how knowledge of LAI can be used to manage tapping intensity in the field, leading to higher rubber yield.
Resumo:
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.
Resumo:
In this study, data on cattle depredation by puma (Puma concolor) and jaguar (Panthera onca) were recorded for six years (1998 - 2003) in a cattle ranch in central-western Brazil. Depredation represented 18.9% of the overall cattle mortality, being predominant on calves. in biomass, kills represented 0.4% (63.8 kg/km(2)) of the ranch`s annual stock. in economic loss, kills represented 0.3% of the cattle stock value. Depredation was mainly associated with cattle`s age class and location along with the time of birth of calves. The proportion of pastures next to forest with depredation (n=33, 48.5%) was not distinguished to the proportion of pastures not bordering forest with depredation (n=35, 51.5%). However, the proportion of pastures next to forest with depredation represented 54% (n=33) of the 61 total pastures that were at least partially surrounded by forest patches or riparian forests that comprised eight continuum blocks of forest fragments of different sizes in the ranch and adjacent areas. No kills occurred in the central portion (main house) of the farm, close to the headquarters where the pastures not bordering forest. The distances of the kills in relation to areas of native forest was 1317.48 +/- 941.03 m. In order to reduce depredation, calves should be kept as far as possible from forest areas and concentrated cattle breeding and calving seasons should be encouraged. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest plantations, which have recently attracted much attention as a result of their high expansion rate in many tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the age of the stands) estimated from these time series with real values provided by the company showed that the root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability and 87% of stand dominant height variability. Age variables were combined with other variables derived from the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest) regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height, and an accuracy of about 25 m(3)/ha for volume (15% of the volume average value) and about 1.6 m for dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated over the two first years after planting, which are critical for stand establishment. These results open perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation forests. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Brazilian agriculture covers about one-third of the land area and is expected to expand further We assessed the compliance of present Brazilian agriculture with environmental legislation and identified challenges for agricultural development connected to this legislation We found (i) minor illegal land use in protected areas under public administration, (ii) a large deficit in legal reserves and protected riparian zones on private farmland, and large areas of unprotected natural vegetation in regions experiencing agriculture expansion Achieving full compliance with the environmental laws as they presently stand would require drastic changes in agricultural land use, where large agricultural areas are taken out of production and converted back to natural vegetation The outcome of a full compliance with environmental legislation might not be satisfactory due to leakage, where pristine unprotected areas become converted to compensate for lost production as current agricultural areas are reconverted to protected natural vegetation. Realizing the desired protection of biodiversity and natural vegetation, while expanding agriculture to meet food and biofuel demand, may require a new approach to environmental protection New legal and regulatory instruments and the establishment of alternative development models should be considered
Resumo:
Solid waste of the automobile industry containing large amounts of heavy metals might affect the emission of greenhouse gases (GHG) when applied to the soil. Accumulation of inorganic chemical elements in the environment generally occurs due to human activity (industry, agriculture, mining and waste landfills). Residues from human activities may release heavy metals to the soil solution, causing toxicity to plants and other soil organisms. Heavy metals may also be adsorbed to clay minerals and/or complexed by the soil organic matter, becoming a potential source of pollutants. Not much is known about the behavior of solid wastes in tropical soil as regarded as source of greenhouse gases (GHG). The emission of GHG (CO(2), CH(4) and N(2)O) was evaluated in incubated soil samples collected in an area contaminated with a solid residue from an automobile industry. Samples were randomly collected at 0 to 0.2 m (a mix of soil and residue), 0.2 to 0.4 m (only residue) and 0.4 to 0.6 m (only soil). A contiguous uncontaminated area, cultivated with sugarcane, was also sampled following the same protocol. Canonical Discriminant Analysis and Principal Component Analysis were applied to the data to evaluate the GHG emission rates. Emission rates of GHG were greater in the samples from the contaminated than the sugarcane area, particularly high during the first days of incubation. CO(2) emissions were greater in samples collected at the upper layer for both areas, while CH(4) and N(2)O emissions were similar in all samples. The emission rates of CH(4) were the most efficient variables to differentiate contaminated and uncontaminated areas.
Resumo:
Specific leaf area (SLA; m(leaf)(2) kg(leaf)(-1)) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain. Both individual tree-based models and other forest process-based models are generally highly sensitive to this parameter, but information on its temporal or within-stand variability is still scarce. In a 2-4-year-old Eucalyptus plantation in Congo, prone to seasonal drought, the within-stand and seasonal variability in SLA were investigated by means of destructive sampling carried out at 2-month intervals, over a 2-year period. Within-crown vertical gradients of SLA were small. Highly significant relationships were found between tree-average SLA (SLA(t)) and tree size (tree height, H(t), or diameter at breast height, DBH): SLA(t) ranged from about 9 m(2) kg(-1) for dominant trees to about 14-15 m(2) kg(-1) for the smallest trees. The decrease in SLA(t) with increasing tree size was accurately predicted from DBH using power functions. Stand-average SLA varied by about 20% during the year, with lowest values at the end of the 5-month dry season, and highest values about 2-3 months after the onset of the wet season. Variability in leaf water status according to tree size and season is discussed as a possible determinant of both the within-stand and seasonal variations in SM. (C) 2009 Elsevier B.V. All rights reserved.
LEAF AREA REDUCTION IN CORN GROWN IN A TROPICAL REGION OF BRAZIL AND ITS EFFECTS ON AGRONOMIC TRAITS
Resumo:
Global climate change may reduce leaf area in crop plants due to factors such as increasing occurrence of pests and diseases. The aim of this work was to estimate the impact of leaf area reduction on agronomic traits in corn. An experiment simulating leaf area reduction was carried out in a tropical region of Brazil. The agronomic performance of corn plants was evaluated at different percentages of leaf loss. It was observed that leaf area reductions over 41.01% significantly harm yield, mass of 1000 grains, cob density, and stem and root quality Crop improvement programs should take into account the development of genotypes resistant to factors that cause leaf area reduction in tropical crops.