930 resultados para Key to species
Resumo:
The Back to the Future Trilogy incorporates several different generic elements, including aspects of the fifties teen movie, science fiction, comedy and the western. These different modes playfully intertwine with each other creating a complex world of repetitions, echoes and modulations. This essay seeks to interrogate the construction of generic elements and the play between them through a close analysis of a repeated performance. Genre is signalled through various strategies employed within the construction of mise-en-scène, a significant portion of this, as I would like to argue, is transmitted through performance. The material detail of a performance – incorporating gesture, movement, voice, and even surrounding elements such as costume – as well as the way it its presented within a film is key to the establishment, invocation and coherence of genre. Furthermore, attention to the complexity of performance details, particularly in the manner in which they reverberate across texts, demonstrates the intricacy of genre and its inherent mutability. The Back to the Future trilogy represents a specific interest in the flexibility of genre. Within each film, and especially across all three, aspects of various genres are interlaced through both visual and narrative detail, thus constructing a dense layer of references both within and without the texts. To explore this patterning in more detail I will interrogate the contribution of performance to generic play through close analysis of Thomas F. Wilson’s performance of Biff/Griff/Burford Tannen and his central encounter with Marty McFly (Michael J. Fox) in each film. These moments take place in a fifties diner, a 1980s retro diner and a saloon respectively, each space contributing the similarities and differences in each repetition. Close attention to Wilson’s performance of each related character, which contains both modulations and repetitions used specifically to place each film’s central generic theme, demonstrates how embedded the play between genres and their flexibility is within the trilogy.
Resumo:
Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species.
Resumo:
BACKGROUND: Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao Swollen Shoot Virus (CSSV) the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. RESULTS: Morphologically similar adult females were characterised by scanning electron microscopy and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes including those accessions from distinct geographical regions. This has allowed for the design of a High Resolution Melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. CONCLUSIONS: HRM Analysis (HRMA) readily differentiated between mealybug pests of cacao that can not necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug transmitted diseases.
Resumo:
Determining the internal layout of archaeological structures and their uses has always been challenging, particularly in timber-framed or earthen walled buildings where doorways and divisions are difficult to trace. In temperate conditions however, soil formation processes may hold the key to understanding how buildings were used. The abandoned Roman town of Silchester, UK, provides a perfect case study for testing a new approach combining experimental archaeology and micromorphology. The results show that this technique can resolve previously uncertain features of urban architecture such as the presence of a roof and the changes in internal organisation and use over time.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Resumo:
Urban greening solutions such as green roofs help improve residents’ thermal comfort and building insulation. However, not all plants provide the same level of cooling. This is partially due to differences in plant structure and function, including different mechanisms that plants employ to regulate leaf temperature. Ranking of multiple leaf/plant traits involved in the regulation of leaf temperature (and, consequently, plants’ cooling ‘service’) is not well understood. We therefore investigated the relative importance of water loss, leaf colour, thickness and extent of pubescence for the regulation of leaf temperature, in the context of species for semi-extensive green roofs. Leaf temperature were measured with an infrared imaging camera in a range of contrasting genotypes within three plant genera (Heuchera, Salvia and Sempervivum). In three glasshouse experiments (each evaluating three or four genotypes of each genera) we varied water availability to the plants and assessed how leaf temperature altered depending on water loss and specific leaf traits. Greatest reductions in leaf temperature were closely associated with higher water loss. Additionally, in non-succulents (Heuchera, Salvia), lighter leaf colour and longer hair length (on pubescent leaves) both contributed to reduced leaf temperature. However, in succulent Sempervivum, colour/pubescence made no significant contribution; leaf thickness and water loss rate were the key regulating factors. We propose that this can lead to different plant types having significantly different potentials for cooling. We suggest that maintaining transpirational water loss by sustainable irrigation and selecting urban plants with favourable morphological traits is the key to maximising thermal benefits provided by applications such as green roofs.
Resumo:
Projected impacts of climate change on the populations and distributions of species pose a challenge for conservationists. In response, a number of adaptation strategies to enable species to persist in a changing climate have been proposed. Management to maximise the quality of habitat at existing sites may reduce the magnitude or frequency of climate-driven population declines. In addition large-scale management of landscapes could potentially improve the resilience of populations by facilitating inter-population movements. A reduction in the obstacles to species’ range expansion, may also allow species to track changing conditions better through shifts to new locations, either regionally or locally. However, despite a strong theoretical base, there is limited empirical evidence to support these management interventions. This makes it difficult for conservationists to decide on the most appropriate strategy for different circumstances. Here extensive data from long-term monitoring of woodland birds at individual sites are used to examine the two-way interactions between habitat and both weather and population count in the previous year. This tests the extent to which site-scale and landscape-scale habitat attributes may buffer populations against variation in winter weather (a key driver of woodland bird population size) and facilitate subsequent population growth. Our results provide some support for the prediction that landscape-scale attributes (patch isolation and area of woodland habitat) may influence the ability of some woodland bird species to withstand weather-mediated population declines. These effects were most apparent among generalist woodland species. There was also evidence that several, primarily specialist, woodland species are more likely to increase following population decline where there is more woodland at both site and landscape scales. These results provide empirical support for the concept that landscape-scale conservation efforts may make the populations of some woodland bird species more resilient to climate change. However in isolation, management is unlikely to provide a universal benefit to all species.
Resumo:
Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.
Resumo:
The Neotropical genus Eigenmannia is a fish group with unknown species diversity where representatives possess a broad range of chromosomal sex determining systems namely XY/XX, X1X2Y/X1X1X2X2, ZZ/ZW as well as homomorphic sex chromosomes. To test the homology of two heteromorphic XY sex chromosome systems present in two sympatric populations, reciprocal cross-species FISH experiments were performed using probes derived by microdissection of X and Y chromosomes present in analyzed specimens of Eigenmannia virescens and Eigenmannia sp.2, respectively. While X and Y paint probes hybridized to species-specific sex chromosomes, in reciprocal cross-FISH both probes hybridized exclusively to autosomes. The result suggests multiple independent origins of the XY systems in the analyzed populations. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Threadsnakes of the tribe Epictini are endemic to the New World, occurring from the United States to Argentina, mostly in the Neotropical region. Currently, the taxonomic status of most species is unclear and there has been no previous attempt of a comprehensive taxonomic revision of Neotropical taxa. Taxonomy of the group is a difficult task due to the paucity of geographic samples, general homogeneous morphology and brevity of species descriptions. Therefore, the only way to address the taxonomic status of existing names is through detailed characterization of the types and the search for additional material of the poorly known species. In this study, we evaluated the taxonomic status of the Colombian threadsnakes and report on geographical variation of meristic, morphometric, colour pattern, and hemipenis characters. On the basis of available samples we recognize the following species in Colombia: Epictia goudotii, E. magnamaculata, E. signata, Rena nicefori, Tricheilostoma brevissimum, T. dugandi, T. joshuai and T. macrolepis. We discuss the systematic position of Rena nicefori and propose its allocation in the genus Tricheilostoma based on a unique combination of morphological characters. Furthermore, we provide a key to the representatives of the tribe Epictini in Colombia.
Resumo:
Both sexes of a new species of Noodtorthopsyllus Lang, 1965 (Harpacticoida, Cristacoxidae) from a sandy beach in Sao Paulo State (Brazil) are described using light and scanning electron microscopy. Noodtorthopsyllus tageae sp. nov. displays a mosaic of characters drawn from both Noodtorthopsyllus and Cristacoxa Huys, 1990, blurring the boundaries between both genera. Consequently, Cristacoxa, the type genus of the nominal family-group taxon Cristacoxidae Huys, 1990, is relegated to a junior subjective synonym of Noodtorthopsyllus, and its type species is transferred to the latter as N. petkovskii (Huys, 1990) comb. nov. A new genus Acuticoxa is proposed to accommodate A. ubatubaensis sp. nov. (type species), collected on the northern continental shelf of Sao Paulo State, and A. biarticulata sp. nov., previously identified as Laophontisochra sp., from the Northern Magellan Straits. Amended diagnoses are provided for Noodtorthopsyllus and Laophontisochra. Autapomorphies supporting the monophyly of the Cristacoxidae are re-evaluated, including new data on P3 endopod sexual dimorphism and caudal ramus development. It is concluded that a recently published hypothesis of a deeply rooted split of the family into two highly divergent lineages cannot be supported. Consequently, both Laophontisochra and Acuticoxa gen. nov. are removed from the Cristacoxidae and tentatively assigned to the Nannopodidae (ex Huntemanniidae), forming a clade with three other genera displaying coxal modifications on leg 1 (Rosacletodes Wells, 1985; Huntemannia Poppe, 1884; and an as yet undescribed genus from Brazil). Based on the sexual dimorphism of the P4 endopod, we propose to transfer Metahuntemannia Smirnov, 1946 and Pottekia Huys, 2009 from the Nannopodidae to the Canthocamptidae (subfamily Hemimesochrinae) where they are probably most closely related to Psammocamptus Mielke, 1975; Bathycamptus Huys & Thistle, 1989; Perucamptus Huys & Thistle, 1989; and Isthmiocaris George & Schminke, 2003. An identification key to the genera of the Nannopodidae is presented.
Resumo:
Borgmeiermyia Townsend, 1935 is a small Neotropical genus of Tachinidae (Diptera) with four described species. Brief descriptions are given to the previously unknown females of B. brasiliana Townsend, 1935 and B. paraguayana Sehnal, 1998, and the male of B. peruana Arnaud, 1963. An identification key to the four known species is given, as well as comments on characters with intraspecific variation. Change of depository of the holotype of B. brasiliana from one institution to another is discussed and its current location is given. Also, the first host is recorded for the genus with the occurrence of B. paraguayana para-sitizing Phylloptera aff. ovalifolia Burmeister, 1839 (Orthoptera: Tettigoniidae: Phaneropterinae).
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
Herein, we report a new approach of an FePt nanoparticle formation mechanism studying the evolution of particle size and composition during the synthesis using the modified polyol process. One of the factors limiting their application in ultra-high-density magnetic storage media is the particle-to-particle composition, which affects the A1-to-L1(0) transformation as well as their magnetic properties. There are many controversies in the literature concerning the mechanism of the FePt formation, which seems to be the key to understanding the compositional chemical distribution. Our results convincingly show that, initially, Pt nuclei are formed due to reduction of Pt(acac)(2) by the diol, followed by heterocoagulation of Fe cluster species formed from Fe(acac)(3) thermal decomposition onto the Pt nuclei. Complete reduction of heterocoagulated iron species seems to involve a CO-spillover process, in which the Pt nuclei surface acts as a heterogeneous catalyst, leading to the improvement of the single-particle composition control and allowing a much narrower compositional distribution. Our results show significant decreases in the particle-to-particle composition range, improving the A1-to-L1(0) phase transformation and, consequently, the magnetic properties when compared with other reported methods.
Resumo:
Math teachers everywhere agree: the way to learn math is to do math. Effective homework is a key to a successful math course. With this goal in mind, a group of math professors at BCC spent the last year working with the online homework system WeBWork. Our intention is to expand our current implementation, with the hope of working across campuses. We will discuss the advantages of WeBWork and how we might work collaboratively across CUNY.