1000 resultados para JUAN-DE-FUCA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low temperature alteration of oceanic basement rocks is characterized by net gain of sulfur, which commonly yields low d34S values, suggesting involvement of microbial sulfate reduction. In order to test whether secondary sulfide minerals are consistent with a biogenic source, we apply high precision multiple sulfur isotope analysis to bulk rock sulfide and pyrite isolates from two contrasting types of altered oceanic basement rocks, namely serpentinized peridotites and altered basalts. Samples from two peridotite sites (Iberian Margin and Hess Deep) and from a basalt site on the eastern flank of the Juan de Fuca Ridge yield overlapping d34S values ranging from 0 per mil to -44 per mil. In contrast, sulfides in the basalt site are characterized by relatively low D33S values ranging from -0.06 per mil to 0.04 per mil, compared to those from peridotite sites (0.00 per mil to 0.16 per mil). The observed D33S signal is significant considering the analytical precision of 0.014 per mil (2 sigma). We present a batch reaction model that uses observed d34S and D33S relationships to quantify the effect of closed system processes and constrain the isotope enrichment factor intrinsic to sulfate reduction. The estimated enrichment factors as large as 61 per mil and 53 per mil, for peridotite and basalt sites respectively, suggest the involvement of microbial sulfate reduction. The relatively high D33S values in the peridotite sites are due to sulfate reduction in a closed system environment, whereas negative D33S values in the basalt site reflect open system sulfate reduction. A larger extent of sulfate reduction during alteration of peridotite to serpentinite is consistent with its higher H2 production capacity compared to basalt alteration, and further supports in-situ microbial sulfate reduction coupled with H2 production during serpentinization reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ODP Leg 204, which drilled at Hydrate Ridge, provides unique insights into the fluid regime of an accretionary complex and delineates specific sub-seafloor pathways for fluid transport. Compaction and dewatering due to smectite-illite transition increase with distance from the toe of the accretionary prism and bring up fluids from deep within the accretionary complex to sampled depths (<= 600 mbsf). These fluids have a distinctly non-radiogenic strontium isotope signature indicating reaction with the oceanic basement. Boron isotopes are also consistent with a deep fluid source that has been modified by desorption of heavy boron as clay minerals change from smectite to illite. One of three major horizons serves as conduit for the transport of mainly fluid. Our results enable us to evaluate fluid migration pathways that play important roles on massive gas hydrate accumulations and seepage of methane-rich fluids on southern Hydrate Ridge.

Relevância:

60.00% 60.00%

Publicador: