934 resultados para Irrigation pumps.
Resumo:
This article reviews research coordinated by the Australian Cotton Cooperative Research Centre (CRC) that investigated production issues for irrigated cotton at five targeted sites in tropical northern Australia, north of 21°S from Broome in Western Australia to the Burdekin in Queensland. The biotic and abiotic issues for cotton production were investigated with the aim of defining the potential limitations and, where appropriate, building a sustainable technical foundation for a future industry if it were to follow. Key lessons from the Cotton CRC research effort were: (1) limitations thought to be associated with cotton production in northern Australia can be overcome by developing a deep understanding of biotic and environmental constraints, then tailoring and validating production practices; and (2) transplanting of southern farming practices without consideration of local pest, soil and climatic factors is unlikely to succeed. Two grower guides were published which synthesised the research for new growers into a rational blueprint for sustainable cotton production in each region. In addition to crop production and environmental impact issues, the project identified the following as key elements needed to establish new cropping regions in tropical Australia: rigorous quantification of suitable land and sustainable water yields; support from governments; a long-term funding model for locally based research; the inclusion of traditional owners; and development of human capacity.
Resumo:
Dry seeding of aman rice can facilitate timely crop establishment and early harvest and thus help to alleviate the monga (hunger) period in the High Ganges Flood Plain of Bangladesh. Dry seeding also offers many other potential benefits, including reduced cost of crop establishment and improved soil structure for crops grown in rotation with rice. However, the optimum time for seeding in areas where farmers have access to water for supplementary irrigation has not been determined. We hypothesized that earlier sowing is safer, and that increasing seed rate mitigates the adverse effects of significant rain after sowing on establishment and crop performance. To test these hypotheses, we analyzed long term rainfall data, and conducted field experiments on the effects of sowing date (target dates of 25 May, 10 June, 25 June, and 10 July) and seed rate (20, 40, and 60 kg ha−1) on crop establishment, growth, and yield of dry seeded Binadhan-7 (short duration, 110–120 d) during the 2012 and 2013 rainy seasons. Wet soil as a result of untimely rainfall usually prevented sowing on the last two target dates in both years, but not on the first two dates. Rainfall analysis also suggested a high probability of being able to dry seed in late May/early June, and a low probability of being able to dry seed in late June/early July. Delaying sowing from 25 May/10 June to late June/early July usually resulted in 20–25% lower plant density and lower uniformity of the plant stand as a result of rain shortly after sowing. Delaying sowing also reduced crop duration, and tillering or biomass production when using a low seed rate. For the late June/early July sowings, there was a strong positive relationship between plant density and yield, but this was not the case for earlier sowings. Thus, increasing seed rate compensated for the adverse effect of untimely rains after sowing on plant density and the shorter growth duration of the late sown crops. The results indicate that in this region, the optimum date for sowing dry seeded rice is late May to early June with a seed rate of 40 kg ha−1. Planting can be delayed to late June/early July with no yield loss using a seed rate of 60 kg ha−1, but in many years, the soil is simply too wet to be able to dry seed at this time due to rainfall.
Resumo:
Abstract The paper evaluates the effect of future climate change (as per the CSIRO Mk3.5 A1FI future climate projection) on cotton yield in Southern Queensland and Northern NSW, eastern Australia by using of the biophysical simulation model APSIM (Agricultural Production Systems sIMulator). The simulations of cotton production show that changes in the influential meteorological parameters caused by climate change would lead to decreased future cotton yields without the effect of CO2 fertilisation. By 2050 the yields would decrease by 17 %. Including the effects of CO2 fertilisation ameliorates the effect of decreased water availability and yields increase by 5.9 % by 2030, but then decrease by 3.6 % in 2050. Importantly, it was necessary to increase irrigation amounts by almost 50 % to maintain adequate soil moisture levels. The effect of CO2 was found to have an important positive impact of the yield in spite of deleterious climate change. This implies that the physiological response of plants to climate change needs to be thoroughly understood to avoid making erroneous projections of yield and potentially stifling investment or increasing risk.
Resumo:
The prospect of climate change has revived both fears of food insecurity and its corollary, market opportunities for agricultural production. In Australia, with its long history of state-sponsored agricultural development, there is renewed interest in the agricultural development of tropical and sub-tropical northern regions. Climate projections suggest that there will be less water available to the main irrigation systems of the eastern central and southern regions of Australia, while net rainfall could be sustained or even increase in the northern areas. Hence, there could be more intensive use of northern agricultural areas, with the relocation of some production of economically important commodities such as vegetables, rice and cotton. The problem is that the expansion of cropping in northern Australia has been constrained by agronomic and economic considerations. The present paper examines the economics, at both farm and regional level, of relocating some cotton production from the east-central irrigation areas to the north where there is an existing irrigation scheme together with some industry and individual interest in such relocation. Integrated modelling and expert knowledge are used to examine this example of prospective climate change adaptation. Farm-level simulations show that without adaptation, overall gross margins will decrease under a combination of climate change and reduction in water availability. A dynamic regional Computable General Equilibrium model is used to explore two scenarios of relocating cotton production from south east Queensland, to sugar-dominated areas in northern Queensland. Overall, an increase in real economic output and real income was realized when some cotton production was relocated to sugar cane fallow land/new land. There were, however, large negative effects on regional economies where cotton production displaced sugar cane. It is concluded that even excluding the agronomic uncertainties, which are not examined here, there is unlikely to be significant market-driven relocation of cotton production.
Resumo:
Intensive pig and poultry farming in Australia can be a source of pathogens with implications for food-safety and/or human illness. Seven studies were undertaken with the following objectives: · Assess the types of zoonotic pathogens in waste · Assess the transfer of pathogens during re-use both within the shed and externally in the environment · The potential for movement of pathogens via aerosols In the first and second studies the extent of zoonotic pathogens was evaluated in both piggery effluent and chicken litter and Salmonella and Campylobacter were detected in both wastes. In the third study the dynamics of Salmonella during litter re-use was examined and results showed a trend for lower Salmonella levels and serovar diversity in re-used litter compared to new litter. Thus, re-use within the poultry farming system posed no increased risk. The fourth study addressed the direct risks of pathogens to farm workers due to reuse of piggery effluent within the pig shed. Based on air-borne Escherichia coli (E. coli) levels, re-using effluent did not pose a risk. In the fifth study high levels of Arcobacter spp. were detected in effluent ponds and freshly irrigated soils with potential food-safety risks during the irrigation of food-crops and pasture. The sixth and seventh studies addressed the risks from aerosols from mechanically ventilated sheds. Staphylococci were shown to have potential as markers, with airborne levels gradually dropping and reaching background levels at 400 m distance. Salmonella was detected (at low levels) both inside and outside the shed (at 10 m). Campylobacter was detected only once inside the shed during the 3-year period (at low levels). Results showed there was minimal risk to humans living adjacent to poultry farms This is the first comprehensive analysis studying key food-safety pathogens and potential public health risks associated with intensively farmed pigs and poultry in Australia.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
Sown pasture rundown and declining soil fertility for forage crops are too serious to ignore with losses in beef production of up to 50% across Queensland. The feasibility of using strategic applications of nitrogen (N) fertiliser to address these losses was assessed by analysing a series of scenarios using data drawn from published studies, local fertiliser trials and expert opinion. While N fertilser can dramatically increase productivity (growth, feed quality and beef production gains of over 200% in some scenarios), the estimated economic benefits, derived from paddock level enterprise budgets for a fattening operation, were much more modest. In the best-performing sown grass scenarios, average gross margins were doubled or tripled at the assumed fertiliser response rates, and internal rates of return of up to 11% were achieved. Using fertiliser on forage sorghum or oats was a much less attractive option and, under the paddock level analysis and assumptions used, forages struggled to be profitable even on fertile sites with no fertiliser input. The economics of nitrogen fertilising on grass pasture were sensitive to the assumed response rates in both pasture growth and liveweight gain. Consequently, targeted research is proposed to re-assess the responses used in this analysis, which are largely based on research 25-40 years ago when soils were generally more fertile and pastures less rundown.
Resumo:
Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Well injection replenishes depleting water levels in a well field. Observation well water levels some distance away from the injection well are the indicators of the success of a well injection program. Simulation of the observation well response, located a few tens of meters from the injection well, is likely to be affected by the effects of nonhomogeneous medium, inclined initial water table, and aquifer clogging. Existing algorithms, such as the U.S. Geological Survey groundwater flow software MODFLOW, are capable of handling the first two conditions, whereas time-dependent clogging effects are yet to be introduced in the groundwater flow models. Elsewhere, aquifer clogging is extensively researched in theory of filtration; scope for its application in a well field is a potential research problem. In the present paper, coupling of one such filtration theory to MODFLOW is introduced. Simulation of clogging effects during “Hansol” well recharge in the parts of western India is found to be encouraging.
Resumo:
This book provides an overview of state of the art assessments of water quality; with an understanding how water quality is affected, and improving water quality for irrigation, drinking and recreation activities.
Resumo:
Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible futurescenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India,which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The indigenous cloud forests in the Taita Hills have suffered substantial degradation for several centuries due to agricultural expansion. Currently, only 1% of the original forested area remains preserved in this region. Furthermore, climate change imposes an imminent threat for local economy and environmental sustainability. In such circumstances, elaborating tools to conciliate socioeconomic growth and natural resources conservation is an enormous challenge. This dissertation tackles essential aspects for understanding the ongoing agricultural activities in the Taita Hills and their potential environmental consequences in the future. Initially, alternative methods were designed to improve our understanding of the ongoing agricultural activities. Namely, methods for agricultural survey planning and to estimate evapotranspiration were evaluated, taking into account a number of limitations regarding data and resources availability. Next, this dissertation evaluates how upcoming agricultural expansion, together with climate change, will affect the natural resources in the Taita Hills up to the year 2030. The driving forces of agricultural expansion in the region were identified as aiming to delineate future landscape scenarios and evaluate potential impacts from the soil and water conservation point of view. In order to investigate these issues and answer the research questions, this dissertation combined state of the art modelling tools with renowned statistical methods. The results indicate that, if current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. Although the simulated land use changes will certainly increase soil erosion figures, new croplands are likely to come up predominantly in the lowlands, which comprise areas with lower soil erosion potential. By 2030, rainfall erosivity is likely to increase during April and November due to climate change. Finally, this thesis addressed the potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR), which is considered another major issue in the context of the relations between land use and climate. Although the simulations indicate that climate change will likely increase annual volumes of rainfall during the following decades, IWR will continue to increase due to agricultural expansion. By 2030, new cropland areas may cause an increase of approximately 40% in the annual volume of water necessary for irrigation.
Resumo:
The problematic of invasive species in an alien environment has aroused the attention of scientists all over the world for quite some time. One of the exotic tree species that has provoked special attention in the tropical drylands is Prosopis juliflora. Originating in South America, prosopis (hereafter referred to as prosopis) has been introduced in the hot and semi-arid zones of the world particularly to provide fuelwood, to stabilize sand dunes and to combat desertification. The tree has become an essential source for fuelwood and a provider of several other products and services in areas where it has become established. However, despite the numerous benefits the tree provides to rural people, in several regions prosopis has become a noxious weed with a negative impact on the environment and to the economy of farmers and landowners. In India, prosopis was introduced in Andhra Pradesh in 1877. The tree was then proclaimed as the precious child of the plant world by scientists and local people alike. The purpose of this study was to investigate the overall impact of prosopis on local rural livelihoods in the drylands of South India. Of particular interest was the examination of the different usages of the tree, especially as fuelwood, and people s perceptions of it. Furthermore, the study examined the negative impacts of the uncontrolled invasion of prosopis on croplands, and its occupation of the banks of irrigation canals and other water sources. As another central theme, this study analysed the Hindu classification system for nature and for trees in particular. In India, several tree species are regarded as sacred. This study examined the position of the exotic prosopis among sacred trees, such as the bodhi, banyan and neem trees. The principle method for collecting the field data was by using individual and thematic group interviews. These interviews were semi-structured with open ended questions. Moreover, unstructured interviews as well as general observations provided complementary information. The data were gathered during two fieldwork periods in the states of Andhra Pradesh and Tamil Nadu, in South India. The results confirmed that prosopis both provides benefits and causes hazards to different stakeholders. Farmers and agriculturalists suffer economic losses in areas where prosopis has invaded crop fields and competes with other plants for water and nutrients. On the other hand, for a significant number of poor rural people, prosopis has become an important source of livelihood benefits. This tree, which grows on government wastelands, is commonly a free resource for all and has thus become a major local source of fuelwood. It also provides several other goods and services and cash income that contributes to improve livelihoods in rural communities. Prosopis ranked lowest in the tree classificatioin system of the Hindus of South India. Although it is appreciated for many benefits it provides for poor people, it has remained an outsider compared with the indigenous tree species. On the other hand, the most sacred trees, such as the bodhi or the banyan, are completely excluded from extraction and it is seen as a sacrilege to even cut branches from any of these trees. An unexpected finding was that, in a few cases, prosopis had also been elevated to the status of a sacred tree. Goods and services from prosopis are not utilized in the most beneficial way. Silvicultural management practices are suggested that would provide additional income and employment opportunities. Interventions are recommended to control further invasion of the tree that might cause serious negative effects in the future. For Hindus, the sacred always ranks highest, even above economic gain. The conservation of sacred groves and sacred trees is a tradition that has its roots in ancient history. These socio-religious practices need to be respected and continued. Successful management of tree and forest resources depends on the willingness of the local people to manage their natural resources, and this willingness exists and has always existed in South India. Keywords: South India, drylands, livelihood, fuelwood, invasive, resource, silviculture.