638 resultados para Ionic Channel
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The t (t) over bar production cross section and top quark mass are measured in proton-proton collisions at root s = 7 TeV in a data sample corresponding to an integrated luminosity of 36 pb(-1) collected by the CMS experiment. The measurements are performed in events with two leptons (electrons or muons) in the final state. Results of the cross section measurement in events with and without b-quark identification are obtained and combined. The measured value is sigma(tt) - 168 +/- 18 (stat:) +/- 14 (syst:) +/- 7 (lumi:) pb, consistent with predictions from the standard model. The top quark mass m(top) is reconstructed with two different methods, a full kinematic analysis and a matrix weighting technique. The combination yields a measurement of m(top) = 175.5 +/- 4.6 (stat:) +/- 4: 6 (syst:) GeV/c(2).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper develops a framework for the interpretation of ionic insertion/deinsertion reactions in an aqueous environment taking place in transition-metal hexacyanoferrates of the general formula KhFek3+ [Fe2+ (CN)(6)](l)center dot mH(2)O, also called Prussian Blue. Three different processes were fully separated in the electrochemistry of these films. It was clearly identified that one of these electrochemical processes involves the insertion/deinsertion of H3O+ (hydrated protons) through the channels of the KhFek3+ [Fe2+ (CN)(6)](l) center dot mH(2)O structure to reach the film electroneutrality during the electron transfer between Everitt's Salt and Prussian Blue. The other electrochemical processes involve K+ or H+ (proton) exchange through the water crystalline structure existing in the channels of the KhFek3+ [Fe2+(CN)(6)](l)center dot mH(2)O structure.