975 resultados para Ion diffusion
Resumo:
A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.
Resumo:
The origin of the microscopic inhomogeneities in InxGa1-xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8μm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.
Resumo:
Direct methanol fuel cells (DMFCs) without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA) specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL) were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.
Resumo:
A simple ion pair-dispersive liquid-liquid microextraction method was proposed for preconcentration trace amounts of rhodium. An ion association complex of RhCl4- and tetradecyldimetylbenzylamonium was extracted into cholorobenzene. The volume and the type of extractive and dispersive solvents, the extraction time and the pH of the aqueous solutions were optimized. The calibration curve was linear in the range of 0.6-500 ng mL-1 of rhodium. The limit of detection was 0.10 ng mL-1 in initial solution and preconcentration factor was 40. The proposed method was successfully applied to the extraction and determination of rhodium in road dust and water samples.
Resumo:
In this paper, we describe the synthesis of an ion imprinted polymer (IIP) by homogeneous polymerization and its use in solid-phase to extract and preconcentrate zinc ions. Under optimal conditions (pH 5.0, preconcentration flow rate of 12.0 mL min-1, and eluted with 1.0 mol L-1 HNO3) this procedure allows the determination of zinc with an enrichment factor of 10.2, and with limits of detection and quantification of 1.5 and 5.0 µg L-1, respectively. The accuracy of our results was confirmed by analysis of tap water and certified reference materials: NIST 1570a (Spinach leaves) and NIST 1515 (Apple leaves).
Resumo:
In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II) ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were ï¬tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II) ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II) ions from wastewaters.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
In this research, scanometry was used as a new, simple, fast and inexpensive method for a colorimetric determination of Mn2+ ion in water samples and thermocouple wire through the use of periodate reagent in an acidic medium. The results showed the oxidization of colorless Mn2+ ion by periodate and the formation of a purplish MnO4- ion. The system had a linear range of 1.0 to 70.0 µg mL-1 Mn2+ ion with a detection limit of 0.314 µg mL-1 and a relative standard deviation of 2.77% for G color value. This method has the capability to determine low levels of Mn2+ ion in thermocouple wire and water samples.
Resumo:
Some models of ion-selective electrodes (ISE) and other methods have been elaborated, to quantify nitrate levels in environmental samples (water, fruits, vegetables and others), using direct potentiometry
Resumo:
This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.
Resumo:
The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.
Resumo:
This work is directed to the study and evaluation of gas diffusion electrodes as detectors in hydrogen sensors. Electrochemical experiments were carried out with rotating disk electrodes with a thin porous coating of the catalyst as a previous step to select useful parameters for the sensor. An experimental arrangement made in the laboratory that simulates the sensor was found appropriate to detect volumetric hydrogen percentages above 0.25% in mixtures H2:N2. The system shows a linear response for volumetric percentages of hydrogen between 0.25 and 2 %.