977 resultados para Interval generalized set


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo do presente trabalho foi avaliar os efeitos do ácido giberélico, do bioestimulante Crop Set e do anelamento sobre o aumento do tamanho de bagas e a produtividade da uva 'Thompson Seedless' no Vale do São Francisco. O experimento foi conduzido durante dois ciclos de produção (2001 e 2002), no Campo Experimental de Bebedouro, pertencente à Embrapa Semi-Árido, em Petrolina-PE. Utilizou-se do delineamento experimental de blocos ao acaso, com 12 tratamentos e 3 repetições. Os tratamentos corresponderam à aplicação de ácido giberélico em cinco fases de desenvolvimento da videira, nas doses de 10 + 15 + 15 +50 + 50 mg.L-1, do bioestimulante Crop Set em duas doses de 0,1 e 0,2% e do anelamento no caule, isolados e combinados entre si. Os tratamentos combinados de anelamento + ácido giberélico e anelamento + ácido giberélico + Crop Set destacaram-se como aqueles que promoveram os maiores peso e tamanho de cachos e de bagas, com diferenças significativas em relação à testemunha. Entretanto, o anelamento não cicatrizou completamente, causando a morte de plantas, recomendando-se cautela na sua realização. Apesar de não se observar efeito significativo dos tratamentos sobre a produtividade, pode-se notar um aumento de 63% para o tratamento anelamento + ácido giberélico em relação ao ciclo de produção de 2001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se han calibrado, validado y comparado tres modelos de resistencia al flujo de contorno granular: un modelo potencial y otros dos modelos desarrollados para condiciones de alta rugosidad relativa (uno basado en una modificación de la ley logarítmica de Prandtl-von Karman y otro fundamentado en un perfil de velocidad configurado en dos zonas: una uniforme en las proximidades de los elementos de rugosidad y otra superior que sigue una distribución logarítmica). Se ha empleado para ello un numeroso conjunto de 1.533 datos tomados en ríos y en canales de laboratorio, representativo de un amplio intervalo hidráulico y geomorfológico en el ámbito de ríos de grava y de montaña. Han resultado preferibles las ecuaciones ajustadas con los percentiles granulométricos mayores (d90 o d84) que las ajustadas con el diámetro mediano (d50), debido a la mayor capacidad explicativa alcanzada dado un modelo, la menor diferencia en la bondad de ajuste entre los diferentes modelos y la menor influencia del origen de los datos (río o canal de laboratorio). Las ecuaciones ajustadas de acuerdo con los modelos en donde se contemplan condiciones de alta rugosidad relativa presentan predicciones similares, exceptuando el intervalo macrorrugoso (y/d90 < 1), en el que es preferible la correspondiente al modelo fundamentado en el perfil de velocidad configurado en dos zonas. Se recomienda restringir la aplicación de la ecuación ajustada con arreglo a la ley potencial al intervalo de y/d90 comprendido entre uno y veinte, puesto que fuera de dicho intervalo tiende a infraestimar notablemente la resistencia al flujo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION: Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS: The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOE ε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and 95 years for ε2ε3 carriers. Amyloid positivity was more common in highly educated participants but not associated with sex or biomarker modality. CONCLUSIONS AND RELEVANCE: Among persons without dementia, the prevalence of cerebral amyloid pathology as determined by positron emission tomography or cerebrospinal fluid findings was associated with age, APOE genotype, and presence of cognitive impairment. These findings suggest a 20- to 30-year interval between first development of amyloid positivity and onset of dementia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, Acute Kidney Injury (AKI) diagnosis and therapy have not notably improved probably due to delay in the diagnosis, among other issues. Precocity and accuracy should be critical parameters in novel AKI biomarker discovery. microRNAs are key regulators of cell responses to many stimuli and they can be secreted to the extracellular environment. Therefore, they can be detected in body fluids and are emerging as novel disease biomarkers. We aimed to identify and validate serum miRNAs useful for AKI diagnosis and management. Using qRT-PCR arrays in serum samples, we determined miRNAs differentially expressed between AKI patients and healthy controls. Statistical and target prediction analysis allowed us to identify a panel of 10 serum miRNAs. This set was further validated, by qRT-PCR, in two independent cohorts of patients with relevant morbi-mortality related to AKI: Intensive Care Units (ICU) and Cardiac Surgery (CS). Statistical correlations with patient clinical parameter were performed. Our results demonstrated that the 10 selected miRNAs (miR-101-3p, miR-127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p, miR-146a-5p, miR-27a-3p, miR-93-3p and miR-10a-5p) were diagnostic biomarkers of AKI in ICU patients, exhibiting areas under the curve close to 1 in ROC analysis. Outstandingly, serum miRNAs estimated before CS predicted AKI development later on, thus becoming biomarkers to predict AKI predisposition. Moreover, after surgery, the expression of the miRNAs was modulated days before serum creatinine increased, demonstrating early diagnostic value. In summary, we have identified a set of serum miRNAs as AKI biomarkers useful in clinical practice, since they demonstrate early detection and high diagnostic value and they recognize patients at risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

Relevância:

20.00% 20.00%

Publicador: