997 resultados para Interstitial oxygen
Resumo:
A new electrocatalysis of carbon materials for oxygen reduction reaction (ORR) on Pt/C catalysts was discovered. It was found that there exist two kinds of electroactive sites on these supports of carbon materials, which can effectively electrocatalyze the reduction of peroxide intermediated from oxygen reduction on Pt, as this provides continuous driving force to move the equilibrium toward the production of peroxide from ORR.
Resumo:
A new polyoxometalate [Co(phen)(3)](2)[HPMo4V Mo-4(VI) V-6(IV) M2O44]center dot 4H(2)O (M = 0.78Mo(V)+ 0.22V(IV)) 1 was hydrothermally synthesized and characterized by IR, elemental analyses, X-ray photoelectron spectrum, ESR and single crystal X-ray diffraction. The title compound is in the triclinic space group P (1) over bar with a = 12.0953(7) angstrom, b = 14.0182(6) angstrom, c = 14.6468(7) angstrom, V=2402.55(18) angstrom(3), alpha = 105.134(2), beta = 91.841(3), gamma = 91.401(2), Z = 1, and R-1 (wR(2)) = 0.0617 (0.1701). The compound was prepared from tetra-capped pseudo-Kepin with phosphorus-centered polyoxoanions [PMo8V6M2O44](5-) , [Co(phen)(3)](2+) cations and linked through hydrogen bonds and pi-pi stacking interaction into three-dimensional supramolecular framework. Astudy of the magnetic properties of 1 demonstrates that it exhibits antiferromagnetic coupling interactions.
Resumo:
A hybrid thin film containing Pt nanoparticles and [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) modified multi-walled carbon nanotubes (MWNTs) on a glassy carbon (GC) electrode surface was fabricated. This hybrid film electrode exhibited remarkable electrocatalytic activity for oxygen reduction and high stability with promising applications in fuel cells.
Resumo:
The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.
Resumo:
The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.
Resumo:
The speciation and distribution of Gd(III) in human interstitial fluid was studied by computer simulation. The results show that at the background concentration, all the Gd(III) species are soluble and no precipitates appear. However as the total concentration of Gd(III) rises above 2.610 x 10(-9) mol/l the insoluble species become predominant. GdPO4 is formed first as a precipitate and then Gd-2(CO3)(3). Among soluble species, free Gd(III), [Gd(HSA)], [Gd(Ox)] and the ternary complexes of Gd(III) with citrate as the primary ligand are main species when the total concentration of Gd(III) is below 2.074 x 10(-2) mol/l. With the total concentration of Gd(III) further rising, [Gd-3(OH)(4)] begins to appear and gradually becomes a predominant species.
Resumo:
A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.
Resumo:
A multiphase model of metal ion speciation in human interstitial fluid was constructed and the effect of Pr(III) on Ca(II) speciation was studied. Results show that free Ca2+, [Ca(HCO3)], and [Ca(Lac)] are the main species of Ca(II). Because of the competition of Pr(III) for ligands with Ca(II), the percentages of free Ca2+, [Ca(Lac)], and [Ca(His)(Thr)H-3] increase gradually and the percentages of CaHPO4(aq) and [Ca(Cit)(His)H-2] decrease gradually with the increase in the total concentration of Pr(III). However, the percentages of [Ca(HCO3)] and CaCO3(aq) first increase and then begin to decrease when the total concentration of Pr(III) exceeds 6.070 x 10(-4) M.
Resumo:
The speciation and distribution of Gd(III) in human interstitial fluid was studied by computer simulation. Meantime artificial neural network was applied to the estimation of log beta values of complexes. The results show that the precipitate species, GdPO4 and Gd-2(CO3)(3), are the predominant species. Among soluble species, the free Gd(III), [Gd(HSA)], [Gd(Ox)] and then the ternary complexes of Gd(III) with citrate arc main species and [Gd-3(OH)(4)] becomes the predominant species at the Gd(III) total concentration or 2.2x10(-2)mol/L.
Resumo:
A series of solid electrolytes Ce1-xSmxO2-y (x=0similar to0.6) were prepared by sol-gel method. XRD measurement showed that single-phase solid solution was formed in all investigated ranges at 160 degreesC, which is a significantly lower synthesis temperature compared to traditional solid state reaction. High temperature X-ray, ESR, and Raman scattering were used to characterize the samples. ESR measurement showed that ESR with sample irradiated by high-energy particle is an effective way to study the defect structure. These changes in the Raman spectrum are attributed to O vacancies, which are introduced into the lattice when tetravalent Ce4+ is substituted by trivalent Sm3+.
Resumo:
It was found for the first time that iron tetraphenylporphyrin (FeTPP)-Pt/C showed the good activity for the electroreduction of oxygen and methanol tolerant ability. Their performances were related to the heat-treatment temperature.
Resumo:
A multi-phase model of Pr(III) speciation in human interstitial fluid was constructed and insoluble Pr(III) speciation was studied. When the total concentration of Pr(III) is below 8.401E-10 mol/L, soluble Pr(III) species are main species. With rising the total concentration of Pr(III), Pr(III) is firstly bound to phosphate to form precipitate of PrPO4, then bound to carbonate and another precipitate of Pr-2(CO3)(3) was obtained. When the total concentration is between 1.583E-9 mol/L and 4.000E-3 mol/L, the insoluble species are predominant Pr(III) species.