950 resultados para Inscriptions, Turkish
Resumo:
publié sous les auspices de l'Académie des Inscriptions et Belles-Lettres par Mayer Lambert et Louis Brandin
Resumo:
The convergence between the Eurasian and Arabian plates has created a complicated structural setting in the Eastern Turkish high plateau (ETHP), particularly around the Karlıova Triple Junction (KTJ) where the Eurasian, Arabian, and Anatolian plates intersect. This region of interest includes the junction of the North Anatolian Shear Zone (NASZ) and the East Anatolian Shear Zone (EASZ), which forms the northern border of the westwardly extruding Anatolian Scholle and the western boundary of the ETHP, respectively. In this study, we focused on a poorly studied component of the KTJ, the Varto Fault Zone (VFZ), and the adjacent secondary structures, which have complex structural settings. Through integrated analyses of remote sensing and field observations, we identified a widely distributed transpressional zone where the Varto segment of the VFZ forms the most northern boundary. The other segments, namely, the Leylekdağ and Çayçatı segments, are oblique-reverse faults that are significantly defined by uplifted topography along their strikes. The measured 515 and 265 m of cumulative uplifts for Mt. Leylek and Mt. Dodan, respectively, yield a minimum uplift rate of 0.35 mm/a for the last 2.2 Ma. The multi-oriented secondary structures were mostly correlated with “the distributed strike-slip” and “the distributed transpressional” in analogue experiments. The misfits in strike of some of secondary faults between our observations and the experimental results were justified by about 20° to 25° clockwise restoration of all relevant structures that were palaeomagnetically measured to have happened since ~ 2.8 Ma ago. Our detected fault patterns and their true nature are well aligned as being part of a transpressional tectonic setting that supports previously suggested stationary triple junction models.
A novel mutation in BCS1L associated with deafness, tubulopathy, growth retardation and microcephaly
Resumo:
We report a novel homozygous missense mutation in the ubiquinol-cytochrome c reductase synthesis-like (BCS1L) gene in two consanguineous Turkish families associated with deafness, Fanconi syndrome (tubulopathy), microcephaly, mental and growth retardation. All three patients presented with transitory metabolic acidosis in the neonatal period and development of persistent renal de Toni-Debré-Fanconi-type tubulopathy, with subsequent rachitis, short stature, microcephaly, sensorineural hearing impairment, mild mental retardation and liver dysfunction. The novel missense mutation c.142A>G (p.M48V) in BCS1L is located at a highly conserved region associated with sorting to the mitochondria. Biochemical analysis revealed an isolated complex III deficiency in skeletal muscle not detected in fibroblasts. Native polyacrylamide gel electrophoresis (PAGE) revealed normal super complex formation, but a shift in mobility of complex III most likely caused by the absence of the BCS1L-mediated insertion of Rieske Fe/S protein into complex III. These findings expand the phenotypic spectrum of BCS1L mutations, highlight the importance of biochemical analysis of different primary affected tissue and underline that neonatal lactic acidosis with multi-organ involvement may resolve after the newborn period with a relatively spared neurological outcome and survival into adulthood. CONCLUSION Mutation screening for BCS1L should be considered in the differential diagnosis of severe (proximal) tubulopathy in the newborn period. What is Known: • Mutations in BCS1L cause mitochondrial complex III deficiencies. • Phenotypic presentations of defective BCS1L range from Bjornstad to neonatal GRACILE syndrome. What is New: • Description of a novel homozygous mutation in BCS1L with transient neonatal acidosis and persistent de Toni-Debré-Fanconi-type tubulopathy. • The long survival of patients with phenotypic presentation of severe complex III deficiency is uncommon.
Resumo:
This paper concentrates on the Early Oligocene palaeoclimate of the southern part of Eastern and Central Europe and gives a detailed climatological analysis, combined with leaf-morphological studies and modelling of the palaeoatmospheric CO2 level using stomatal and d13 C data. Climate data are calculated using the Coexistence Approach for Kiscellian floras of the Palaeogene Basin (Hungary and Slovenia) and coeval assemblages from Central and Southeastern Europe. Potential microclimatic or habitat variations are considered using morphometric analysis of fossil leaves from Hungarian, Slovenian and Italian floras. Reconstruction of CO2 is performed by applying a recently introduced mechanistic model. Results of climate analysis indicate distinct latitudinal and longitudinal climate patterns for various variables which agree well with reconstructed palaeogeography and vegetation. Calculated climate variables in general suggest a warm and frost-free climate with low seasonal variation of temperature. A difference in temperature parameters is recorded between localities from Central and Southeastern Europe, manifested mainly in the mean temperature of the coldest month. Results of morphometric analysis suggest microclimatic or habitat difference among studied floras. Extending the scarce information available on atmospheric CO2 levels during the Oligocene, we provide data for a well-defined time-interval. Reconstructed atmospheric CO2 levels agree well with threshold values for Antarctic ice sheet growth suggested by recent modelling studies. The successful application of the mechanistic model for the reconstruction of atmospheric CO2 levels raises new possibitities for future climate inference from macro-flora studies.