951 resultados para Infrared Visualization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate the influence of pit and fissure sealants on fluorescence readings using lasers. We selected 166 permanent molars and randomly divided them into 4 groups which were each treated with a different sealant (a commercially available clear sealant, 2 opaque sealants and an experimental nanofilled clear sealant). The teeth were independently measured twice by 2 experienced dentists using conventional laser fluorescence (LF) and a laser fluorescence pen device (LFpen), before and after sealing, and again after thermocycling to simulate the thermal stressing between the tooth and the dental materials. Friedman test showed no statistically significant changes using LF and LFpen for the commercial clear sealant group, although values tended to increase after sealing. However, the values increased significantly after thermocycling. There was a statistically significant decrease in fluorescence after application of opaque sealants. After application of the experimental nanofilled clear sealant, LF values increased only after thermocycling, whereas the LFpen values increased after sealing and after thermocycling as well. The intraclass correlation coefficient ranged from 0.87 to 0.96 for interexaminer and 0.82 to 0.94 for intraexaminer reproducibility. It was shown that pit and fissure sealants influence LF and LFpen readings, with the values increasing or decreasing according to the material used. In conclusion, both laser fluorescence devices could be useful as an adjunct to detect occlusal caries under unfilled clear sealants. Nevertheless, surfaces sealed with clear nanofilled material could be assessed using only the LF device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Perforating arteries are commonly involved during the surgical dissection and clipping of intracranial aneurysms. Occlusion of perforating arteries is responsible for ischemic infarction and poor outcome. The goal of this study is to describe the usefulness of near-infrared indocyanine green videoangiography (ICGA) for the intraoperative assessment of blood flow in perforating arteries that are visible in the surgical field during clipping of intracranial aneurysms. In addition, we analyzed the incidence of perforating vessels involved during the aneurysm surgery and the incidence of ischemic infarct caused by compromised small arteries. METHODS: Sixty patients with 64 aneurysms were surgically treated and prospectively included in this study. Intraoperative ICGA was performed using a surgical microscope (Carl Zeiss Co., Oberkochen, Germany) with integrated ICGA technology. The presence and involvement of perforating arteries were analyzed in the microsurgical field during surgical dissection and clip application. Assessment of vascular patency after clipping was also investigated. Only those small arteries that were not visible on preoperative digital subtraction angiography were considered for analysis. RESULTS: The ICGA was able to visualize flow in all patients in whom perforating vessels were found in the microscope field. Among 36 patients whose perforating vessels were visible on ICGA, 11 (30%) presented a close relation between the aneurysm and perforating arteries. In one (9%) of these 11 patients, ICGA showed occlusion of a P1 perforating artery after clip application, which led to immediate correction of the clip confirmed by immediate reestablishment of flow visible with ICGA without clinical consequences. Four patients (6.7%) presented with postoperative perforating artery infarct, three of whom had perforating arteries that were not visible or distant from the aneurysm. CONCLUSION: The involvement of perforating arteries during clip application for aneurysm occlusion is a usual finding. Intraoperative ICGA may provide visual information with regard to the patency of these small vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In the acute respiratory distress syndrome potentially recruitable lung volume is currently discussed. (3)He-magnetic resonance imaging ((3)He-MRI) offers the possibility to visualize alveolar recruitment directly. METHODS: With the approval of the state animal care committee, unilateral lung damage was induced in seven anesthetized pigs by saline lavage of the right lungs. The left lung served as an intraindividual control (healthy lung). Unilateral lung damage was confirmed by conventional proton MRI and spiral-CT scanning. The total aerated lung volume was determined both at a positive end-expiratory pressure (PEEP) of 0 and 10 mbar from three-dimensionally reconstructed (3)He images, both for healthy and damaged lungs. The fractional increase of aerated volume in damaged and healthy lungs, followed by a PEEP increase from 0 to 10 mbar, was compared. RESULTS: Aerated gas space was visualized with a high spatial resolution in the three-dimensionally reconstructed (3)He-MR images, and aeration defects in the lavaged lung matched the regional distribution of atelectasis in proton MRI. After recruitment and PEEP increase, the aerated volume increased significantly both in healthy lungs from 415 ml [270-445] (median [min-max]) to 481 ml [347-523] and in lavaged lungs from 264 ml [71-424] to 424 ml [129-520]. The fractional increase in lavaged lungs was significantly larger than that in healthy lungs (healthy: 17% [11-38] vs. lavage: 42% [14-90] (P=0.031). CONCLUSION: The (3)He-MRI signal might offer an experimental approach to discriminate atelectatic vs. poor aerated lung areas in a lung damage animal model. Our results confirm the presence of potential recruitable lung volume by either alveolar collapse or alveolar flooding, in accordance with previous reports by computed tomography.