880 resultados para Information retrieval
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The classification of texts has become a major endeavor with so much electronic material available, for it is an essential task in several applications, including search engines and information retrieval. There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the task. For instance, in topic extraction similar texts mean those within the same semantic field, whereas in author recognition stylistic features should be considered. In this study, we introduce ways to classify texts employing concepts of complex networks, which may be able to capture syntactic, semantic and even pragmatic features. The interplay between various metrics of the complex networks is analyzed with three applications, namely identification of machine translation (MT) systems, evaluation of quality of machine translated texts and authorship recognition. We shall show that topological features of the networks representing texts can enhance the ability to identify MT systems in particular cases. For evaluating the quality of MT texts, on the other hand, high correlation was obtained with methods capable of capturing the semantics. This was expected because the golden standards used are themselves based on word co-occurrence. Notwithstanding, the Katz similarity, which involves semantic and structure in the comparison of texts, achieved the highest correlation with the NIST measurement, indicating that in some cases the combination of both approaches can improve the ability to quantify quality in MT. In authorship recognition, again the topological features were relevant in some contexts, though for the books and authors analyzed good results were obtained with semantic features as well. Because hybrid approaches encompassing semantic and topological features have not been extensively used, we believe that the methodology proposed here may be useful to enhance text classification considerably, as it combines well-established strategies. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main modules for (i) discovering the structural commonalities between sub-trees, (ii) identifying sub-tree semantic resemblances, (iii) computing tree-based edit operations costs, and (iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance.
Resumo:
The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012
Resumo:
Este trabalho relata a experiência e os procedimentos adotados em um processo de análise e identificação dos títulos de periódicos recebidos pela Biblioteca do Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo, desde sua criação. Para a coleta de dados foram utilizadas as informações dos registros bibliográficos no Módulo de Catalogação no Banco de Dados Bibliográficos – DEDALUS Aleph 500 Versão 18.1 da Universidade de São Paulo, seguindo alguns critérios pré-estabelecidos. Conclui-se que, apesar dos problemas detectados serem pouco relevantes em relação ao acervo analisado, deve-se manter um estudo comparativo entre a necessidade do usuário e a coleção disponível na Biblioteca, para que os periódicos atendam às necessidades de informação de seus usuários.
Resumo:
O artigo apresenta uma análise da operacionalidade das Folksonomias e a possibilidade de aplicação dessa ferramenta nos sistemas de organização da informação da área de Ciência da Informação. Para tanto foi realizada uma análise de coerência de tags e dos recursos disponíveis para etiquetagem em dois websites, a Last.fm e o CiteULike. Por meio dessa análise constatou-se que em ambos os websites ocorreram incoerências e discrepâncias nas tags utilizadas. Todavia, o sistema da Last.fm demonstrou-se mais funcional que o do CiteULike obtendo um desempenho melhor. Por fim, sugere-se a junção das Folksonomias às Ontologias, que permitiriam a criação de sistemas automatizados de organização de conteúdos informacionais alimentados pelos próprios usuários
Resumo:
The need for a convergence between semi-structured data management and Information Retrieval techniques is manifest to the scientific community. In order to fulfil this growing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of XQuery. However, the issue of query optimization requires the study of important properties like query equivalence and containment; to this aim, a formal representation of document and queries is needed. The goal of this thesis is to establish such formal background. We define a data model for XML documents and propose an algebra able to represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text expression can be translated into an algebraic expression and how an algebraic expression can be optimized.
Resumo:
L'informatica musicale è una disciplina in continua crescita che sta ottenendo risultati davvero interessanti con l'impiego di sistemi artificiali intelligenti, come le reti neuronali, che permettono di emulare capacità umane di ascolto e di esecuzione musicale. Di particolare interesse è l'ambito della codifica di informazioni musicali tramite formati simbolici, come il MIDI, che permette un'analisi di alto livello dei brani musicali e consente la realizzazione di applicazioni sorprendentemente innovative. Una delle più fruttifere applicazioni di questi nuovi strumenti di codifica riguarda la classificazione di file audio musicali. Questo elaborato si propone di esporre i fondamentali aspetti teorici che concernono la classificazione di brani musicali tramite reti neuronali artificiali e descrivere alcuni esperimenti di classificazione di file MIDI. La prima parte fornisce alcune conoscenze di base che permettono di leggere gli esperimenti presenti nella seconda sezione con una consapevolezza teorica più profonda. Il fine principale della prima parte è quello di sviluppare una comparazione da diversi punti di vista disciplinari tra le capacità di classificazione musicale umane e quelle artificiali. Si descrivono le reti neuronali artificiali come sistemi intelligenti ispirati alla struttura delle reti neurali biologiche, soffermandosi in particolare sulla rete Feedforward e sull'algoritmo di Backpropagation. Si esplora il concetto di percezione nell'ambito della psicologia cognitiva con maggiore attenzione alla percezione uditiva. Accennate le basi della psicoacustica, si passa ad una descrizione delle componenti strutturali prima del suono e poi della musica: la frequenza e l'ampiezza delle onde, le note e il timbro, l'armonia, la melodia ed il ritmo. Si parla anche delle illusioni sonore e della rielaborazione delle informazioni audio da parte del cervello umano. Si descrive poi l'ambito che interessa questa tesi da vicino: il MIR (Music Information Retrieval). Si analizzano i campi disciplinari a cui questa ricerca può portare vantaggi, ossia quelli commerciali, in cui i database musicali svolgono ruoli importanti, e quelli più speculativi ed accademici che studiano i comportamenti di sistemi intelligenti artificiali e biologici. Si descrivono i diversi metodi di classificazione musicale catalogabili in base al tipo di formato dei file audio in questione e al tipo di feature che si vogliono estrarre dai file stessi. Conclude la prima sezione di stampo teorico un capitolo dedicato al MIDI che racconta la storia del protocollo e ne descrive le istruzioni fondamentali nonchè la struttura dei midifile. La seconda parte ha come obbiettivo quello di descrivere gli esperimenti svolti che classificano file MIDI tramite reti neuronali mostrando nel dettaglio i risultati ottenuti e le difficoltà incontrate. Si coniuga una presentazione dei programmi utilizzati e degli eseguibili di interfaccia implementati con una descrizione generale della procedura degli esperimenti. L'obbiettivo comune di tutte le prove è l'addestramento di una rete neurale in modo che raggiunga il più alto livello possibile di apprendimento circa il riconoscimento di uno dei due compositori dei brani che le sono stati forniti come esempi.
Resumo:
Tesi interdisciplinare che coniuga due importanti ambiti della Matematica: il Calcolo Numerico e la Didattica della Matematica. Alcuni algoritmi utilizzati per il web information retrieval sono stati introdotti all'interno di due classi di scuola superiore avvalendosi del programma di calcolo Matlab.
Resumo:
Introduzione a tecniche di web semantico e realizzazione di un approccio in grado di ricreare un ambiente familiare di un qualsiasi motore di ricerca con funzionalità semantico-lessicali e possibilità di estrazione, in base ai risultati di ricerca, dei concetti e termini chiave che costituiranno i relativi gruppi di raccolta per i vari documenti con argomenti in comune.
Resumo:
Except the article forming the main content most HTML documents on the WWW contain additional contents such as navigation menus, design elements or commercial banners. In the context of several applications it is necessary to draw the distinction between main and additional content automatically. Content extraction and template detection are the two approaches to solve this task. This thesis gives an extensive overview of existing algorithms from both areas. It contributes an objective way to measure and evaluate the performance of content extraction algorithms under different aspects. These evaluation measures allow to draw the first objective comparison of existing extraction solutions. The newly introduced content code blurring algorithm overcomes several drawbacks of previous approaches and proves to be the best content extraction algorithm at the moment. An analysis of methods to cluster web documents according to their underlying templates is the third major contribution of this thesis. In combination with a localised crawling process this clustering analysis can be used to automatically create sets of training documents for template detection algorithms. As the whole process can be automated it allows to perform template detection on a single document, thereby combining the advantages of single and multi document algorithms.
Resumo:
In questo lavoro si introducono i concetti di base di Natural Language Processing, soffermandosi su Information Extraction e analizzandone gli ambiti applicativi, le attività principali e la differenza rispetto a Information Retrieval. Successivamente si analizza il processo di Named Entity Recognition, focalizzando l’attenzione sulle principali problematiche di annotazione di testi e sui metodi per la valutazione della qualità dell’estrazione di entità. Infine si fornisce una panoramica della piattaforma software open-source di language processing GATE/ANNIE, descrivendone l’architettura e i suoi componenti principali, con approfondimenti sugli strumenti che GATE offre per l'approccio rule-based a Named Entity Recognition.