882 resultados para Influenza viruses
Resumo:
The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.
Resumo:
Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region. ^
Resumo:
OBJECTIVES: To determine whether current influenza vaccination is associated with reduced risk of major vascular events in patients with recent ischemic stroke or TIA of mainly atherothrombotic origin. METHODS: Data were pooled from 2 prospective cohort studies, the OPTIC Registry (n = 3,635) and the AMISTAD Study (n = 618), and from the randomized PERFORM Trial (n = 19,120), all of which included patients with recent ischemic stroke or TIA. Influenza vaccination status was determined in 23,110 patients. The primary outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, or vascular death up to 2 years. Secondary outcomes were myocardial infarction and stroke separately. RESULTS: Influenza vaccination had no association with the primary outcome in the propensity score-matched cohort (hazard ratio 0.97, 95% confidence interval [CI] 0.85-1.11; p = 0.67) or in the propensity score-adjusted cohort (hazard ratio 1.00, 95% CI 0.89-1.12; p = 0.99). Similarly, the risk of stroke and myocardial infarction did not differ between the vaccinated group and the unvaccinated group; in the matched cohort, the hazard ratio was 1.01 (95% CI 0.88-1.17; p = 0.89) for stroke and 0.84 (95% CI 0.59-1.18; p = 0.30) for myocardial infarction. CONCLUSIONS: Influenza vaccination was not associated with reduced outcome events in patients with recent atherothrombotic ischemic stroke after considering all baseline characteristics (including concomitant medications) associated with influenza vaccination.
Resumo:
A genome-wide siRNA screen against host factors that affect the infection of Semliki Forest virus (SFV), a positive-strand (+)RNA virus, revealed that components of the nonsense-mediated mRNA decay (NMD) pathway restrict early, post-entry steps of the infection cycle. In HeLa cells and primary human fibroblasts, knockdown of UPF1, SMG5 and SMG7 leads to increased levels of viral proteins and RNA and to higher titers of released virus. The inhibitory effect of NMD was stronger when the efficiency of virus replication was impaired by mutations or deletions in the replicase proteins. Accordingly, impairing NMD resulted in a more than 20-fold increased production of these attenuated viruses. Our data suggest that intrinsic features of genomic and sub-genomic viral mRNAs, most likely the extended 3'-UTR length, make them susceptible to NMD. The fact that SFV replication is entirely cytoplasmic strongly suggests that degradation of the viral RNA occurs through the exon junction complex (EJC)-independent mode of NMD. Collectively, our findings uncover a new biological function for NMD as an intrinsic barrier to the translation of early viral proteins and the amplification of (+)RNA viruses in animal cells. Thus, in addition to its role in mRNA surveillance and post-transcriptional gene regulation, NMD also contributes to protect cells from RNA viruses.
Resumo:
The aim of this study was to determine if severity assessment tools (general severity of illness and community-acquired pneumonia specific scores) can be used to guide decisions for patients admitted to the intensive care unit (ICU) due to pandemic influenza A pneumonia. A prospective, observational, multicentre study included 265 patients with a mean age of 42 (±16.1) years and an ICU mortality of 31.7%. On admission to the ICU, the mean pneumonia severity index (PSI) score was 103.2 ± 43.2 points, the CURB-65 score was 1.7 ± 1.1 points and the PIRO-CAP score was 3.2 ± 1.5 points. None of the scores had a good predictive ability: area under the ROC for PSI, 0.72 (95% CI, 0.65-0.78); CURB-65, 0.67 (95% CI, 0.59-0.74); and PIRO-CAP, 0.64 (95% CI, 0.56-0.71). The PSI score (OR, 1.022 (1.009-1.034), p 0.001) was independently associated with ICU mortality; however, none of the three scores, when used at ICU admission, were able to reliably detect a low-risk group of patients. Low risk for mortality was identified in 27.5% of patients using PIRO-CAP, but above 40% when using PSI (I-III) or CURB65 (<2). Observed mortality was 13.7%, 13.5% and 19.4%, respectively. Pneumonia-specific scores undervalued severity and should not be used as instruments to guide decisions in the ICU.
Resumo:
INTRODUCTION Early use of corticosteroids in patients affected by pandemic (H1N1)v influenza A infection, although relatively common, remains controversial. METHODS Prospective, observational, multicenter study from 23 June 2009 through 11 February 2010, reported in the European Society of Intensive Care Medicine (ESICM) H1N1 registry. RESULTS Two hundred twenty patients admitted to an intensive care unit (ICU) with completed outcome data were analyzed. Invasive mechanical ventilation was used in 155 (70.5%). Sixty-seven (30.5%) of the patients died in ICU and 75 (34.1%) whilst in hospital. One hundred twenty-six (57.3%) patients received corticosteroid therapy on admission to ICU. Patients who received corticosteroids were significantly older and were more likely to have coexisting asthma, chronic obstructive pulmonary disease (COPD), and chronic steroid use. These patients receiving corticosteroids had increased likelihood of developing hospital-acquired pneumonia (HAP) [26.2% versus 13.8%, p < 0.05; odds ratio (OR) 2.2, confidence interval (CI) 1.1-4.5]. Patients who received corticosteroids had significantly higher ICU mortality than patients who did not (46.0% versus 18.1%, p < 0.01; OR 3.8, CI 2.1-7.2). Cox regression analysis adjusted for severity and potential confounding factors identified that early use of corticosteroids was not significantly associated with mortality [hazard ratio (HR) 1.3, 95% CI 0.7-2.4, p = 0.4] but was still associated with an increased rate of HAP (OR 2.2, 95% CI 1.0-4.8, p < 0.05). When only patients developing acute respiratory distress syndrome (ARDS) were analyzed, similar results were observed. CONCLUSIONS Early use of corticosteroids in patients affected by pandemic (H1N1)v influenza A infection did not result in better outcomes and was associated with increased risk of superinfections.
Resumo:
Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b- AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b- PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.
Resumo:
BACKGROUND To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients. METHODS An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment. RESULTS Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population. CONCLUSIONS Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.
Resumo:
The polarization into M1 and M2 macrophages (MΦ) is essential to understand MΦ function. Consequently, the aim of this study was to determine the impact of IFN-γ (M1), IL-4 (M2) and IFN-β activation of MΦ on the susceptibility to genotype 1 and 2 porcine reproductive respiratory syndrome (PRRS) virus (PRRSV) strains varying in virulence. To this end, monocyte-derived MΦ were generated by culture during 72h and polarization was induced for another 24h by addition of IFN-γ, IL-4 or IFN-β. MΦ were infected with a collection of PRRSV isolates belonging to genotype 1 and genotype 2. Undifferentiated and M2 MΦ were highly susceptible to all PRRSV isolates. In contrast, M1 and IFN-β activated MΦ were resistant to low pathogenic genotype 1 PRRSV but not or only partially to genotype 2 PRRSV strains. Interestingly, highly virulent PRRSV isolates of both genotypes showed particularly high levels of infection compared with the prototype viruses in both M1 and IFN-β-treated MΦ (P<0.05). This was seen at the level of nucleocapsid expression, viral titres and virus-induced cell death. In conclusion, by using IFN-γ and IFN-β stimulated MΦ it is possible to discriminate between PRRSV varying in genotype and virulence. Genotype 2 PRRSV strains are more efficient at escaping the intrinsic antiviral effects induced by type I and II IFNs. Our in vitro model will help to identify viral genetic elements responsible for virulence, an information important not only to understand PRRS pathogenesis but also for a rational vaccine design. Our results also suggest that monocyte-derived MΦ can be used as a PRRSV infection model instead of alveolar MΦ, avoiding the killing of pigs.
Resumo:
The hepatitis E virus (HEV) was first identified in 1990, although hepatitis E-like diseases in humans have been recorded for a long time dating back to the 18th century. The HEV genotypes 1–4 have been subsequently detected in human hepatitis E cases with different geographical distribution and different modes of transmission. Genotypes 3 and 4 have been identified in parallel in pigs, wild boars and other animal species and their zoonotic potential has been confirmed. Until 2010, these genotypes along with avian HEV strains infecting chicken were the only known representatives of the family Hepeviridae. Thereafter, additional HEV-related viruses have been detected in wild boars, distinct HEV-like viruses were identified in rats, rabbit, ferret, mink, fox, bats and moose, and a distantly related agent was described from closely related salmonid fish. This review summarizes the characteristics of the so far known HEV-like viruses, their phylogenetic relationship, host association and proposed involvement in diseases. Based on the reviewed knowledge, a suggestion for a new taxonomic grouping scheme of the viruses within the family Hepeviridae is presented.
Resumo:
OBJECTIVE To describe all patients admitted to children's hospitals in Switzerland with a diagnosis of influenza A/H1N1/09 virus infection during the 2009 influenza pandemic, and to analyse their characteristics, predictors of complications, and outcome. METHODS All patients ≤18-years-old hospitalised in eleven children's hospitals in Switzerland between June 2009 and January 2010 with a positive influenza A/H1N1/09 reverse transcriptase polymerase chain reaction (RT-PCR) from a nasopharyngeal specimen were included. RESULTS There were 326 PCR-confirmed patients of whom 189 (58%) were younger than 5 years of age, and 126 (38.7%) had one or more pre-existing medical condition. Fever (median 39.1 °C) was the most common sign (85.6% of all patients), while feeding problems (p = 0.003) and febrile seizures (p = 0.016) were significantly more frequent in children under 5 years. In 142 (43.6%) patients there was clinical suspicion of a concomitant bacterial infection, which was confirmed in 36 patients (11%). However, severe bacterial infection was observed in 4% of patients. One third (n = 108, 33.1%) of the patients were treated with oseltamivir, 64 (59.3%, or 20% overall) within 48 hours of onset of symptoms. Almost half of the patients (45.1%) received antibiotics for a median of 7 days. Twenty patients (6.1%) required intensive care, mostly for complicated pneumonia (50%) without an underlying medical condition. The median duration of hospitalisation was 2 days (range 0-39) for 304 patients. Two children (<15 months of age with underlying disease) died. CONCLUSIONS Although pandemic influenza A/H1N1/09 virus infection in children is mostly mild, it can be severe, regardless of past history or underlying disease.
Resumo:
Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.