927 resultados para ISSR molecular markers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cultivated strawberry (Fragaria x ananassa) is the berry fruit most consumed worldwide and is well-known for its delicate flavour and nutritional properties. However, fruit quality attributes have been lost or reduced after years of traditional breeding focusing mainly on agronomical traits. To face the obstacles encountered in the improvement of cultivated crops, new technological tools, such as genomics and high throughput metabolomics, are becoming essential for the identification of genetic factors responsible of organoleptic and nutritive traits. Integration of “omics” data will allow a better understanding of the molecular and genetic mechanisms underlying the accumulation of metabolites involved in the flavour and nutritional value of the fruit. To identify genetic components affecting/controlling? fruit metabolic composition, here we present a quantitative trait loci (QTL) analysis using a 95 F1 segregating population derived from genotypes ‘1392’, selected for its superior flavour, and ‘232’ selected based in high yield (Zorrilla-Fontanesi et al., 2011; Zorrilla-Fontanesi et al., 2012). Metabolite profiling was performed on red stage strawberry fruits using gas chromatography hyphenated to time-of-flight mass spectrometry, which is a rapid and highly sensitive approach, allowing a good coverage of the central pathways of primary metabolism. Around 50 primary metabolites, including sugars, sugars derivatives, amino and organic acids, were detected and quantified after analysis in each individual of the population. QTL mapping was performed on the ‘232’ x ‘1392’ population separately over two successive years, based on the integrated linkage map (Sánchez-Sevilla et al., 2015). First, significant associations between metabolite content and molecular markers were identified by the non-parametric test of Kruskal-Wallis. Then, interval mapping (IM), as well as the multiple QTL method (MQM) allowed the identification of QTLs in octoploid strawberry. A permutation test established LOD thresholds for each metabolite and year. A total of 132 QTLs were detected in all the linkage groups over the two years for 42 metabolites out of 50. Among them, 4 (9.8%) QTLs for sugars, 9 (25%) for acids and 7 (12.7%) for amino acids were stable and detected in the two successive years. We are now studying the QTLs regions in order to find candidate genes to explain differences in metabolite content in the different individuals of the population, and we expect to identify associations between genes and metabolites which will help us to understand their role in quality traits of strawberry fruit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias - Especialidade de Produção Animal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Themarine environment seems, at first sight, to be a homogeneousmediumlacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected. Weaimto elucidate the role of oceanographical factors ingenerating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution ofmarine biodiversity but also formanagement and conservation of marine life. For this proposal,we investigate the genetic structure and connectivity between continental and insular populations ofwhite seabreamin North East Atlantic (NEA) and Mediterranean Sea (MS) aswell as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers. Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream(adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation. Mediterranean islands show similar genetic diversity to the neighbouring continental samples and nonsignificant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genomic selection (GS) has recently been proposed as a new selection strategy which represents an innovative paradigm in crop improvement, now widely adopted in animal breeding. Genomic selection relies on phenotyping and high-density genotyping of a sufficiently large and representative sample of the target breeding population, so that the majority of loci that regulate a quantitative trait are in linkage disequilibrium with one or more molecular markers and can thus be captured by selection. In this study we address genomic selection in a practical fruit breeding context applying it to a breeding population of table grape obtained from a cross between the hybrid genotype D8909-15 (Vitis rupestris × Vitis arizonica/girdiana), which is resistant to dagger nematode and Pierce?s disease (PD), and ?B90-116?, a susceptible Vitis vinifera cultivar with desirable fruit characteristics. Our aim was to enhance the knowledge on the genomic variation of agronomical traits in table grape populations for future use in marker-assisted selection (MAS) and GS, by discovering a set of molecular markers associated with genomic regions involved in this variation. A number of Quantitative Trait Loci (QTL) were discovered but this method is inaccurate and the genetic architecture of the studied population was better captured by the BLasso method of genomic selection, which allowed for efficient inference about the genetic contribution of the various marker loci. The technology of genomic selection afforded greater efficiency than QTL analysis and can be very useful in speeding up the selection procedures for agronomic traits in table grapes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The establishment of a specific Marker-Assisted Selection Facility at the Embrapa Rice and Beans Biotechnology Laboratory, in 2014, has better supported the routine analysis with molecular markers demanded by the Embrapa Common Bean Breeding Program. In addition, it has also supported other Embrapa plant breeding programs, such as rice and cotton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To identify effective molecular diagnostic methods for oral squamous cell carcinoma (OSCC) to facilitate treatment of the disease in its initial stages. Methods: To identify molecular markers, OSCC tissue samples were collected from cancer patients and healthy controls. CD44+ cells were sorted using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry and immunostaining experiments were performed to identify markers for OSCC. Results: The qRT-PCR data confirmed the presence of oncogenic miR-155 in the OSCC samples. The immunohistochemical and immunostaining results confirmed the expression of Oct-4, an important target for the early diagnosis of OSCC, in oncogenic miR-155-positive OSCCs. Conclusion: Detection of the expression of miR-155 and Oct-4, which are key molecular markers, may be useful in improving the early diagnosis of OSCC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O monitoramento da diversidade genética é fundamental em um programa de repovoamento. Avaliouse a diversidade genética de pacu Piaractus mesopotamicus (Holmberg, 1887) em duas estações de piscicultura em Andirá -Paraná, Brasil, utilizadas no programa de repovoamento do Rio Paranapanema. Foram amplificados seis loci microssatélite para avaliar 60 amostras de nadadeira. O estoque de reprodutores B apresentou maior número de alelos e heterozigose (alelos: 22 e H O: 0,628) que o estoque de reprodutores A (alelos: 21 e H O: 0,600). Alelos com baixos níveis de frequência foram observados nos dois estoques. Os coeficientes positivos de endogamia no locus Pme2 (estoque A: F IS = 0,30 e estoque B: F IS = 0,20), Pme5 (estoque B: F IS = 0,15), Pme14 (estoque A: F IS = 0,07) e Pme28 (estoque A: F IS = 0,24 e estoque B: F IS = 0,20), indicaram deficiência de heterozigotos. Foi detectada a presença de um alelo nulo no lócus Pme2. As estimativas negativas nos loci Pme4 (estoque A: F IS = -0,43 e estoque B: F IS= -0,37), Pme5 (estoque A: F IS = - 0,11), Pme14 (estoque B: F IS = - 0,15) e Pme32 (estoque A: F IS = - 0,93 e estoque B: F IS = - 0,60) foram indicativas de excesso de heterozigotos. Foi evidenciado desequilíbrio de ligação e riqueza alélica baixa só no estoque A. A diversidade genética de Nei foi alta nos dois estoques. A distância (0,085) e identidade (0,918) genética mostraram similaridade entre os estoques, o qual reflete uma possível origem comum. 6,05% da variância genética total foi devida a diferenças entre os estoques. Foi observado um recente efeito gargalo nos dois estoques. Os resultados indicaram uma alta diversidade genética nos estoques de reprodutores e baixa diferenciação genética entre eles, o que foi causado pelo manejo reprodutivo das pisciculturas, redução do tamanho populacional e intercâmbio genético entre as pisciculturas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The technique of delineating Populus tremuloides (Michx.) clonal colonies based on morphology and phenology has been utilized in many studies and forestry applications since the 1950s. Recently, the availability and robustness of molecular markers has challenged the validity of such approaches for accurate clonal identification. However, genetically sampling an entire stand is largely impractical or impossible. For that reason, it is often necessary to delineate putative genet boundaries for a more selective approach when genetically analyzing a clonal population. Here I re-evaluated the usefulness of phenotypic delineation by: (1) genetically identifying clonal colonies using nuclear microsatellite markers, (2) assessing phenotypic inter- and intraclonal agreement, and (3) determining the accuracy of visible characters to correctly assign ramets to their respective genets. The long-term soil productivity study plot 28 was chosen for analysis and is located in the Ottawa National Forest, MI (46° 37'60.0" N, 89° 12'42.7" W). In total, 32 genets were identified from 181 stems using seven microsatellite markers. The average genet size was 5.5 ramets and six of the largest were selected for phenotypic analyses. Phenotypic analyses included budbreak timing, DBH, bark thickness, bark color or brightness, leaf senescence, leaf serrations, and leaf length ratio. All phenotypic characters, except for DBH, were useful for the analysis of inter- and intraclonal variation and phenotypic delineation. Generally, phenotypic expression was related to genotype with multiple response permutation procedure (MRPP) intraclonal distance values ranging from 0.148 and 0.427 and an observed MRPP delta value=0.221 when the expected delta=0.5. The phenotypic traits, though, overlapped significantly among some clones. When stems were assigned into phenotypic groups, six phenotypic groups were identified with each group containing a dominant genotype or clonal colony. All phenotypic groups contained stems from at least two clonal colonies and no clonal colony was entirely contained within one phenotypic group. These results demonstrate that phenotype varies with genotype and stand clonality can be determined using phenotypic characters, but phenotypic delineation is less precise. I therefore recommend that some genetic identification follow any phenotypic delineation. The amount of genetic identification required for clonal confirmation is likely to vary based on stand and environmental conditions. Further analysis, however, is needed to test these findings in other forest stands and populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite Springer’s (1964) revision of the sharpnose sharks (genus Rhizoprionodon), the taxonomic definition and ranges of Rhizoprionodon in the western Atlantic Ocean remains problematic. In particular, the distinction between Rhizoprionodon terraenovae and R. porosus, and the occurrence of R. terraenovae in South American waters are unresolved issues involving common and ecologically important species in need of fishery management in Caribbean and southwest Atlantic waters. In recent years, molecular markers have been used as efficient tools for the detection of cryptic species and to address controversial taxonomic issues. In this study 415 samples of the genus Rhizoprionodon captured in the western Atlantic Ocean from Florida to southern Brazil were examined for sequences of the COI gene and the D-loop and evaluated for nucleotide differences. The results on nucleotide composition, AMOVA tests, and relationship distances using Bayesian-likelihood method and haplotypes network, corroborates Springer’s (1964) morphometric and meristic finding and provide strong evidence that supports consideration of R. terraenovae and R. porosus as distinct species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The DNA polymorphism among 22 isolates of Sclerospora graminicola, the causal agent of downy mildew disease of pearl millet was assessed using 20 inter simple sequence repeats (ISSR) primers. The objective of the study was to examine the effectiveness of using ISSR markers for unravelling the extent and pattern of genetic diversity in 22 S. graminicola isolates collected from different host cultivars in different states of India. The 19 functional ISSR primers generated 410 polymorphic bands and revealed 89% polymorphism and were able to distinguish all the 22 isolates. Polymorphic bands used to construct an unweighted pair group method of averages (UPGMA) dendrogram based on Jaccard's co-efficient of similarity and principal coordinate analysis resulted in the formation of four major clusters of 22 isolates. The standardized Nei genetic distance among the 22 isolates ranged from 0.0050 to 0.0206. The UPGMA clustering using the standardized genetic distance matrix resulted in the identification of four clusters of the 22 isolates with bootstrap values ranging from 15 to 100. The 3D-scale data supported the UPGMA results, which resulted into four clusters amounting to 70% variation among each other. However, comparing the two methods show that sub clustering by dendrogram and multi dimensional scaling plot is slightly different. All the S. graminicola isolates had distinct ISSR genotypes and cluster analysis origin. The results of ISSR fingerprints revealed significant level of genetic diversity among the isolates and that ISSR markers could be a powerful tool for fingerprinting and diversity analysis in fungal pathogens.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F-ST ) among the populations. The Mantel test showed that two types of matrices of D and F-ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei's unbiased genetic distance (D) and fixation index (F-ST) between the populations. The Mantel test showed that two types of matrices of D and FST were highly correlated, whether from RAPD or ISSR data, r=0.9310 (P = 0.008) and 0.9313 (P=0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Genetic variation of 10 Rhodiola alsia ( Crassulaceae) populations from the Qinghai - Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai - Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.