896 resultados para I-3-mediated Resistance
Resumo:
The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.
Resumo:
The X-ray crystal structures of two lamotrigine derivatives (I) 2-methyl, 3-amino, 5-imino-6-(2, 3-dichlorophenyl)-1,2,4-triazine, C10H9Cl2N5, as the hemi hydrate and (II) 2-methyl,3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine, C10H10Cl2N5, as the isethionate-water solvate, have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are monoclinic and centrosymmetric, with (I) in space group C2/c, and (II) in space group P2(1)/n. For (I) the unit cell dimensions are a = 19.5466(10), b = 7.5483(4), c = 15.7861(8) angstrom, beta = 91.458(3)degrees, volume = 2328.4(2) angstrom(3), Z = 8, density = 1.590 Mg/m(3); for (II). For (II) the unit cell dimensions are a = 6.0566(2), b = 11.0084(4) c = 23.9973(9) angstrom, beta = 92.587(3)degrees, volume = 1598.35(10) angstrom(3), Z = 4, density = 1.597 Mg/m(3). For (I) final R indices [I > 2sigma(I)] are R1 = 0.0356, wR2 = 0.0782 and R indices (all data) are R1 = 0.0424, wR2 = 0.0817. For (II) final R indices [I > 2sigma(I)] are R1 = 0.0380, wR2 = 0.0871 and R indices (all data) R1 = 0.0558, wR2 = 0.0949. Both structures have a molecule of water of crystallization and (II) also includes a solvated CH3SO3. Comparisons are made between the two structures. Structure (I) is very unusual in having a = NH group at position C5' on the triazine ring. No other examples of this particular substitution, which is usually -NH2, have been reported.
Resumo:
Laboratory studies were conducted to investigate the interactions of nanoparticles (NPs) formed via simulated cloud processing of mineral dust with seawater under environmentally relevant conditions. The effect of sunlight and the presence of exopolymeric substances (EPS) were assessed on the: (1) colloidal stability of the nanoparticle aggregates (i.e. size distribution, zeta potential, polydispersity); (2) micromorphology and (3) Fe dissolution from particles. We have demonstrated that: (i) synthetic nano-ferrihydrite has distinct aggregation behaviour from NPs formed from mineral dusts in that the average hydrodynamic diameter remained unaltered upon dispersion in seawater (~1500 nm), whilst all dust derived NPs increased about three fold in aggregate size; (ii) relatively stable and monodisperse aggregates of NPs formed during simulated cloud processing of mineral dust become more polydisperse and unstable in contact with seawater; (iii) EPS forms stable aggregates with both the ferrihydrite and the dust derived NPs whose hydrodynamic diameter remains unchanged in seawater over 24h; (iv) dissolved Fe concentration from NPs, measured here as <3 kDa filter-fraction, is consistently >30% higher in seawater in the presence of EPS and the effect is even more pronounced in the absence of light; (v) micromorphology of nanoparticles from mineral dusts closely resemble that of synthetic ferrihydrite in MQ water, but in seawater with EPS they form less compact aggregates, highly variable in size, possibly due to EPS-mediated steric and electrostatic interactions. The larger scale implications on real systems of the EPS solubilising effect on Fe and other metals with the additional enhancement of colloidal stability of the resulting aggregates are discussed.
Resumo:
Measures of prevention and control against polycyclic aromatic hydrocarbons (PAHs) focus on an official food control, a code of best practice to reduce PAHs levels by controlling industry and in the development of a chemopreventive strategy. Regulation (EU) 835/2011 establishes maximum levels of PAHs for each food group. In addition, Regulations (EU) 333/2007 and 836/2011 set up the methods of sampling and analysis for its official control. Scientific studies prove that the chemopreventive strategy is effective against these genotoxic compounds effects. Most chemopreventive compounds studied with proven protective effects against PAHs are found in fruit and vegetables.
Resumo:
Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.
Resumo:
Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.
Resumo:
An early and critical event in beta2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent beta2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) beta2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3´,5´-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected beta2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in beta2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.
Resumo:
The long-term impact of dietary carbohydrate type, in particular sucrose, on insulin resistance and the development of diabetes and atherosclerosis is not established. Current guidelines for the healthy population advise restriction of sucrose intake. We investigated the effect of high- versus low-sucrose diet (25 vs. 10%, respectively, of total energy intake) in 13 healthy subjects aged 33 +/- 3 years (mean +/- SE), BMI 26.6 +/- 0.9 kg/m(2), in a randomized crossover design with sequential 6-week dietary interventions separated by a 4-week washout. Weight maintenance, eucaloric diets with identical macronutrient profiles and fiber content were designed. All food was weighed and distributed. Insulin action was assessed using a two-step euglycemic clamp; glycemic profiles were assessed by the continuous glucose monitoring system and vascular compliance by pulse-wave analysis. There was no change in weight across the study. Peripheral glucose uptake and suppression of endogenous glucose production were similar after each diet. Glycemic profiles and measures of vascular compliance did not change. A rise in total and LDL cholesterol was observed. In this study, a high-sucrose intake as part of an eucaloric, weight-maintaining diet had no detrimental effect on insulin sensitivity, glycemic profiles, or measures of vascular compliance in healthy nondiabetic subjects.
Resumo:
Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide [GIP]) is an important incretin hormone secreted by endocrine K-cells in response to nutrient ingestion. In this study, we investigated the effects of chemical ablation of GIP receptor (GIP-R) action on aspects of obesity-related diabetes using a stable and specific GIP-R antagonist, (Pro3)GIP. Young adult ob/ob mice received once-daily intraperitoneal injections of saline vehicle or (Pro3)GIP over an 11-day period. Nonfasting plasma glucose levels and the overall glycemic excursion (area under the curve) to a glucose load were significantly reduced (1.6-fold; P <0.05) in (Pro3)GIP-treated mice compared with controls. GIP-R ablation also significantly lowered overall plasma glucose (1.4-fold; P <0.05) and insulin (1.5-fold; P <0.05) responses to feeding. These changes were associated with significantly enhanced (1.6-fold; P <0.05) insulin sensitivity in the (Pro3)GIP-treated group. Daily injection of (Pro3)GIP reduced pancreatic insulin content (1.3-fold; P <0.05) and partially corrected the obesity-related islet hypertrophy and ß-cell hyperplasia of ob/ob mice. These comprehensive beneficial effects of (Pro3)GIP were reversed 9 days after cessation of treatment and were independent of food intake and body weight, which were unchanged. These studies highlight a role for GIP in obesity-related glucose intolerance and emphasize the potential of specific GIP-R antagonists as a new class of drugs for the alleviation of insulin resistance and treatment of type 2 diabetes.
Resumo:
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5–11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.