920 resultados para Human platelet polymorphism -3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membranes prepared from Bombyx mori silk fibroin have shown potential as a substrate for human limbal epithelial (L-EC) and stromal cell cultivation. Here we present fibroin as a dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. We have compared the growth and phenotype of L-EC on non-porous versus porous fibroin membranes. Furthermore, we have compared the growth of limbal mesenchymal stromal cells (L-MSC) in either serum-supplemented medium or the MesenCult-XF® culture system within fibroin fibrous mats. The co-culture of L-EC and L-MSC in fibroin dual-layer constructs was also examined. L-EC on porous membranes displayed a squamous monolayer; in contrast, L-EC on non-porous fibroin appeared cuboidal and stratified. Both constructs maintained evidence of corneal phenotype (cytokeratin 3/12) and distribution of ΔNp63+ progenitor cells. L-MSC cultivated within fibroin fibrous mats in serum-supplemented medium contained less than 64% of cells expressing the characteristic MSC phenotype of CD73+CD90+CD105+ after two weeks, compared with over 81% in MesenCult-XF® medium. Dual-layer fibroin scaffolds consisting of L-EC and L-MSC maintained a similar phenotype as on the separate layers. These results support the feasibility of a 3D engineered limbus constructed from B. mori silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Although risk of human papillomavirus (HPV)–associated cancers of the anus, cervix, oropharynx, penis, vagina, and vulva is increased among persons with AIDS, the etiologic role of immunosuppression is unclear and incidence trends for these cancers over time, particularly after the introduction of highly active antiretroviral therapy in 1996, are not well described. Methods Data on 499 230 individuals diagnosed with AIDS from January 1, 1980, through December 31, 2004, were linked with cancer registries in 15 US regions. Risk of in situ and invasive HPV-associated cancers, compared with that in the general population, was measured by use of standardized incidence ratios (SIRs) and 95% confidence intervals (CIs). We evaluated the relationship of immunosuppression with incidence during the period of 4–60 months after AIDS onset by use of CD4 T-cell counts measured at AIDS onset. Incidence during the 4–60 months after AIDS onset was compared across three periods (1980–1989, 1990–1995, and 1996–2004). All statistical tests were two-sided. Results Among persons with AIDS, we observed statistically significantly elevated risk of all HPV-associated in situ (SIRs ranged from 8.9, 95% CI = 8.0 to 9.9, for cervical cancer to 68.6, 95% CI = 59.7 to 78.4, for anal cancer among men) and invasive (SIRs ranged from 1.6, 95% CI = 1.2 to 2.1, for oropharyngeal cancer to 34.6, 95% CI = 30.8 to 38.8, for anal cancer among men) cancers. During 1996–2004, low CD4 T-cell count was associated with statistically significantly increased risk of invasive anal cancer among men (relative risk [RR] per decline of 100 CD4 T cells per cubic millimeter = 1.34, 95% CI = 1.08 to 1.66, P = .006) and non–statistically significantly increased risk of in situ vagina or vulva cancer (RR = 1.52, 95% CI = 0.99 to 2.35, P = .055) and of invasive cervical cancer (RR = 1.32, 95% CI = 0.96 to 1.80, P = .077). Among men, incidence (per 100 000 person-years) of in situ and invasive anal cancer was statistically significantly higher during 1996–2004 than during 1990–1995 (61% increase for in situ cancers, 18.3 cases vs 29.5 cases, respectively; RR = 1.71, 95% CI = 1.24 to 2.35, P < .001; and 104% increase for invasive cancers, 20.7 cases vs 42.3 cases, respectively; RR = 2.03, 95% CI = 1.54 to 2.68, P < .001). Incidence of other cancers was stable over time. Conclusions Risk of HPV-associated cancers was elevated among persons with AIDS and increased with increasing immunosuppression. The increasing incidence for anal cancer during 1996–2004 indicates that prolonged survival may be associated with increased risk of certain HPV-associated cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction—Human herpesvirus 8 (HHV8) is necessary for Kaposi sarcoma (KS) to develop, but whether peripheral blood viral load is a marker of KS burden (total number of KS lesions), KS progression (the rate of eruption of new KS lesions), or both is unclear. We investigated these relationships in persons with AIDS. Methods—Newly diagnosed patients with AIDS-related KS attending Mulago Hospital, in Kampala, Uganda, were assessed for KS burden and progression by questionnaire and medical examination. Venous blood samples were taken for HHV8 load measurements by PCR. Associations were examined with odds ratio (OR) and 95% confidence intervals (CI) from logistic regression models and with t-tests. Results—Among 74 patients (59% men), median age was 34.5 years (interquartile range [IQR], 28.5-41). HHV8 DNA was detected in 93% and quantified in 77% patients. Median virus load was 3.8 logs10/106 peripheral blood cells (IQR 3.4-5.0) and was higher in men than women (4.4 vs. 3.8 logs; p=0.04), in patients with faster (>20 lesions per year) than slower rate of KS lesion eruption (4.5 vs. 3.6 logs; p<0.001), and higher, but not significantly, among patients with more (>median [20] KS lesions) than fewer KS lesions (4.4 vs. 4.0 logs; p=0.16). HHV8 load was unrelated to CD4 lymphocyte count (p=0.23). Conclusions—We show significant association of HHV8 load in peripheral blood with rate of eruption of KS lesions, but not with total lesion count. Our results suggest that viral load increases concurrently with development of new KS lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper comprises: a study investigating the component mechanical behaviour of a spring-suspended, production level seat when indented by SAE J826 type, human thigh-buttock representing hard shell; a model of seated human buttock shape for improved indenter design using a multivariate representation of Australian population thigh-buttock anthropometry; and a finite-element study simulating the deflection of human buttock and thigh soft tissue when seated, based on seated MRI. The results of the three studies provide a description of the mechanical properties of the driver-seat interface, and allow validation of future dynamic simulations, involving multi-body and finite-element (FE) DHM in virtual ergonomic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applying ice or other forms of topical cooling is a popular method of treating sports injuries. It is commonplace for athletes to return to competitive activity, shortly or immediately after the application of a cold treatment. In this article, we examine the effect of local tissue cooling on outcomes relating to functional performance and to discuss their relevance to the sporting environment. A computerized literature search, citation tracking and hand search was performed up to April, 2011. Eligible studies were trials involving healthy human participants, describing the effects of cooling on outcomes relating to functional performance. Two reviewers independently assessed the validity of included trials and calculated effect sizes. Thirty five trials met the inclusion criteria; all had a high risk of bias. The mean sample size was 19. Meta-analyses were not undertaken due to clinical heterogeneity. The majority of studies used cooling durations >20 minutes. Strength (peak torque/force) was reported by 25 studies with approximately 75% recording a decrease in strength immediately following cooling. There was evidence from six studies that cooling adversely affected speed, power and agility-based running tasks; two studies found this was negated with a short rewarming period. There was conflicting evidence on the effect of cooling on isolated muscular endurance. A small number of studies found that cooling decreased upper limb dexterity and accuracy. The current evidence base suggests that athletes will probably be at a performance disadvantage if they return to activity immediately after cooling. This is based on cooling for longer than 20 minutes, which may exceed the durations employed in some sporting environments. In addition, some of the reported changes were clinically small and may only be relevant in elite sport. Until better evidence is available, practitioners should use short cooling applications and/or undertake a progressive warm up prior to returning to play.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of plasma taken from normotensive humans, while on a low and high sodium diet, on [Na + K]-ATPase and 3H-ouabain binding was measured in tubules from guinea-pig kidneys. Plasma from the high sodium, compared to the low sodium, diet period: (a) inhibited [Na + K]-ATPase activity; (b) decreased 3H-ouabain affinity for binding sites; (c) increased the number of available 3H-ouabain binding sites; (d) decreased [Na + K]-ATPase turnover (activity/3H-ouabain binding sites). The inhibition of [Na + K]-ATPase suggests an increase in a (possible) natriuretic factor. The decreased affinity of 3H-ouabain binding suggests an endogenous ouabainoid, which may be the natriuretic factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We hypothesize that chondrocytes from distinct zones of articular cartilage respond differently to compressive loading, and that zonal chondrocytes from osteoarthritis (OA) patients can benefit from optimized compressive stimulation. Therefore, we aimed to determine the transcriptional response of superficial (S) and middle/deep (MD) zone chondrocytes to varying dynamic compressive strain and loading duration. To confirm effects of compressive stimulation on overall matrix production, we subjected zonal chondrocytes to compression for 2 weeks. Design: Human S and MD chondrocytes from osteoarthritic joints were encapsulated in 2% alginate, pre-cultured, and subjected to compression with varying dynamic strain (5, 15, 50% at 1 Hz) and loading duration (1, 3, 12 h). Temporal changes in cartilage-specific, zonal, and dedifferentiation genes following compression were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). The benefits of long-term compression (50% strain, 3 h/day, for 2 weeks) were assessed by measuring construct glycosaminoglycan (GAG) content and compressive moduli, as well as immunostaining. Results: Compressive stimulation significantly induced aggrecan (ACAN), COL2A1, COL1A1, proteoglycan 4 (PRG4), and COL10A1 gene expression after 2 h of unloading, in a zone-dependent manner (P < 0.05). ACAN and PRG4 mRNA levels depended on strain and load duration, with 50% and 3 h loading resulting in highest levels (P < 0.05). Long-term compression increased collagen type II and ACAN immunostaining and total GAG (P < 0.05), but only S constructs showed more PRG4 stain, retained more GAG (P < 0.01), and developed higher compressive moduli than non-loaded controls. Conclusions: The biosynthetic activity of zonal chondrocytes from osteoarthritis joints can be enhanced with selected compression regimes, indicating the potential for cartilage tissue engineering applications. © 2012 Osteoarthritis Research Society International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premature convergence to local optimal solutions is one of the main difficulties when using evolutionary algorithms in real-world optimization problems. To prevent premature convergence and degeneration phenomenon, this paper proposes a new optimization computation approach, human-simulated immune evolutionary algorithm (HSIEA). Considering that the premature convergence problem is due to the lack of diversity in the population, the HSIEA employs the clonal selection principle of artificial immune system theory to preserve the diversity of solutions for the search process. Mathematical descriptions and procedures of the HSIEA are given, and four new evolutionary operators are formulated which are clone, variation, recombination, and selection. Two benchmark optimization functions are investigated to demonstrate the effectiveness of the proposed HSIEA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To develop a rapid optimized technique of wide-field imaging of the human corneal subbasal nerve plexus. A dynamic fixation target was developed and, coupled with semiautomated tiling software, a rapid method of capturing and montaging multiple corneal confocal microscopy images was created. To illustrate the utility of this technique, wide-field maps of the subbasal nerve plexus were produced in 2 participants with diabetes, 1 with and 1 without neuropathy. The technique produced montages of the central 3 mm of the subbasal corneal nerve plexus. The maps seem to show a general reduction in the number of nerve fibers and branches in the diabetic participant with neuropathy compared with the individual without neuropathy. This novel technique will allow more routine and widespread use of subbasal nerve plexus mapping in clinical and research situations. The significant reduction in the time to image the corneal subbasal nerve plexus should expedite studies of larger groups of diabetic patients and those with other conditions affecting nerve fibers. The inferior whorl and the surrounding areas may show the greatest loss of nerve fibers in individuals with diabetic neuropathy, but this should be further investigated in a larger cohort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.