916 resultados para Higher-order aberrations
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm · m for curvature and 2.2 × 10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
We report findings which suggest perception of 'higher order' attributes such as gender and social dominance are perceived from a schematic face. To investigate a large population, the first two experiments were carried out in both the traditional manner and on the Internet. Results obtained from both were not significantly different so the data sets were combined. Lowered eyebrow position was a strong indicator of both social dominance and the male gender. A schematic face with a sad mouth resulted in the face's being viewed as less dominant and less male. Eyegaze direction also was investigated and discussed in terms of dyadic influence. Evidence supported the assumption that both social dominance and the male gender are perceived through similar facial configurations on a schematic face. Limitations include the use of schematic face pairs, and the presentation of single faces in research is discussed.
Resumo:
The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.
Resumo:
To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.
Resumo:
This paper explores the relationship between self-reported innovative characteristics and dysfunctional personality traits. Participants (N = 207) from a range of occupations completed the Innovation Potential Indicator (IPI) and the Hogan Development Survey (HDS). Those who reported innovative characteristics also reported the following dysfunctional traits: Arrogant, Manipulative, Dramatic, Eccentric; and lower levels of Cautious, Perfectionist and Dependent. A representative approximation of the higher order factor “moving against people” (Hogan & Hogan, 1997) was positively associated with innovative characteristics. It is concluded that innovation potential may be viewed as a positive effect of some otherwise dysfunctional traits, most notably those encompassed under the second-order HDS factor ‘moving against people’.
A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation
Resumo:
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 µM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.
Resumo:
Auditory processing disorder (APD) is diagnosed when a patient presents with listening difficulties which can not be explained by a peripheral hearing impairment or higher-order cognitive or language problems. This review explores the association between auditory processing disorder (APD) and other specific developmental disorders such as dyslexia and attention-deficit hyperactivity disorder. The diagnosis and aetiology of APD are similar to those of other developmental disorders and it is well established that APD often co-occurs with impairments of language, literacy, and attention. The genetic and neurological causes of APD are poorly understood, but developmental and behavioural genetic research with other disorders suggests that clinicians should expect APD to co-occur with other symptoms frequently. The clinical implications of co-occurring symptoms of other developmental disorders are considered and the review concludes that a multi-professional approach to the diagnosis and management of APD, involving speech and language therapy and psychology as well as audiology, is essential to ensure that children have access to the most appropriate range of support and interventions.
Resumo:
The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.
Resumo:
We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.
Resumo:
We report the performance of coherently-detected nine-channel WDM transmission over high dispersion fibers, using polarization multiplexed m-ary quadrature amplitude modulation (m = 4, 16, 64, 256) at 112 Gbit/s. Compensation of fiber nonlinearities via digital back-propagation enables up to 10 dB improvement in maximum transmittable power and similar to 8 dB Q(eff) improvement which translates to a nine-fold enhancement in transmission reach for PM-256QAM, where the largest improvements are associated with higher-order modulation formats. We further demonstrate that even under strong nonlinear distortion the transmission reach only reduces by a factor of similar to 2.5 for a 2 unit increase in capacity (log(2)m) when full band DBP is employed, in proportion to the required back-to-back OSNR.
Resumo:
We experimentally demonstrate adiabatic soliton propagation in the fundamental mode of a few mode optical fibre and more complex behaviour in a higher order mode, indicating that the impact of nonlinearities differs for each mode.
Resumo:
Visual perception begins by dissecting the retinal image into millions of small patches for local analyses by local receptive fields. However, image structures extend well beyond these receptive fields and so further processes must be involved in sewing the image fragments back together to derive representations of higher order (more global) structures. To investigate the integration process, we also need to understand the opposite process of suppression. To investigate both processes together, we measured triplets of dipper functions for targets and pedestals involving interdigitated stimulus pairs (A, B). Previous work has shown that summation and suppression operate over the full contrast range for the domains of ocularity and space. Here, we extend that work to include orientation and time domains. Temporal stimuli were 15-Hz counter-phase sine-wave gratings, where A and B were the positive and negative phases of the oscillation, respectively. For orientation, we used orthogonally oriented contrast patches (A, B) whose sum was an isotropic difference of Gaussians. Results from all four domains could be understood within a common framework in which summation operates separately within the numerator and denominator of a contrast gain control equation. This simple arrangement of summation and counter-suppression achieves integration of various stimulus attributes without distorting the underlying contrast code.
Resumo:
This paper is a cross-national study testing a framework relating cultural descriptive norms to entrepreneurship in a sample of 40 nations. Based on data from the Global Leadership and Organizational Behavior Effectiveness project, we identify two higher-order dimensions of culture – socially supportive culture (SSC) and performance-based culture (PBC) – and relate them to entrepreneurship rates and associated supply-side and demand-side variables available from the Global Entrepreneurship Monitor. Findings provide strong support for a social capital/SSC and supply-side variable explanation of entrepreneurship rate. PBC predicts demand-side variables, such as opportunity existence and the quality of formal institutions to support entrepreneurship.
Resumo:
This thesis explores efforts to conjoin organisational contexts and capabilities in explaining sustainable competitive advantage. Oliver (1997) argued organisations need to balance the need to conform to industry’s requirements to attain legitimization (e.g. DiMaggio & Powell, 1983), and the need for resource optimization (e.g. Barney, 1991). The author hypothesized that such balance can be viewed as movements along the homogeneity-heterogeneity continuum. An organisation in a homogenous industry possesses similar characteristics as its competitors, as opposed to a heterogeneous industry in which organisations within are differentiated and competitively positioned (Oliver, 1997). The movement is influenced by the dynamic environmental conditions that an organisation is experiencing. The author extended Oliver’s (1997) propositions of combining RBV’s focus on capabilities with institutional theory’s focus on organisational context, as well as redefining organisational receptivity towards change (ORC) factors from Butler and Allen’s (2008) findings. The authors contributed to the theoretical development of ORC theory to explain the attainment of sustainable competitive advantage. ORC adopts the assumptions from both institutional and RBV theories, where the receptivity factors include both organisational contexts and capabilities. The thesis employed a mixed method approach in which sequential qualitative quantitative studies were deployed to establish a robust, reliable, and valid ORC scale. The adoption of Hinkin’s (1995) three-phase scale development process was updated, thus items generated from interviews and literature reviews went through numerous exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to achieve convergent, discriminant, and nomological validities. Samples in the first phase (semi structured interviews) were hotel owners and managers. In the second phase, samples were MBA students, and employees of private and public sectors. In the third phase, samples were hotel managers. The final ORC scale is a parsimonious second higher-order latent construct. The first-order constructs comprises four latent receptivity factors which are ideological vision (4 items), leading change (4 items), implementation capacity (4 items), and change orientation (7 items). Hypotheses testing revealed that high levels of perceived environmental uncertainty leads to high levels of receptivity factor. Furthermore, the study found a strong positive correlation between receptivity factors and competitive advantage, and between receptivity factors and organisation performance. Mediation analyses revealed that receptivity factors partially mediate the relationship between perceived environmental uncertainty, competitive advantage and organisational performance.
Resumo:
C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.