993 resultados para Healthcare architecture
Resumo:
A neural network model, called an FBF network, is proposed for automatic parallel separation of multiple image figures from each other and their backgrounds in noisy grayscale or multi-colored images. The figures can then be processed in parallel by an array of self-organizing Adaptive Resonance Theory (ART) neural networks for automatic target recognition. An FBF network can automatically separate the disconnected but interleaved spirals that Minsky and Papert introduced in their book Perceptrons. The network's design also clarifies why humans cannot rapidly separate interleaved spirals, yet can rapidly detect conjunctions of disparity and color, or of disparity and motion, that distinguish target figures from surrounding distractors. Figure-ground separation is accomplished by iterating operations of a Feature Contour System (FCS) and a Boundary Contour System (BCS) in the order FCS-BCS-FCS, hence the term FBF, that have been derived from an analysis of biological vision. The FCS operations include the use of nonlinear shunting networks to compensate for variable illumination and nonlinear diffusion networks to control filling-in. A key new feature of an FBF network is the use of filling-in for figure-ground separation. The BCS operations include oriented filters joined to competitive and cooperative interactions designed to detect, regularize, and complete boundaries in up to 50 percent noise, while suppressing the noise. A modified CORT-X filter is described which uses both on-cells and off-cells to generate a boundary segmentation from a noisy image.
Resumo:
A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.
Resumo:
A methodology for improved power controller switching in mobile Body Area Networks operating within the ambient healthcare environment is proposed. The work extends Anti-windup and Bumpless transfer results to provide a solution to the ambulatory networking problem that ensures sufficient biometric data can always be regenerated at the base station. The solution thereby guarantees satisfactory quality of service for healthcare providers. Compensation is provided for the nonlinear hardware constraints that are a typical feature of the type of network under consideration and graceful performance degradation in the face of hardware output power saturation is demonstrated, thus conserving network energy in an optimal fashion.
Resumo:
Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.
Resumo:
Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.
Resumo:
The healthcare industry is beginning to appreciate the benefits which can be obtained from using Mobile Health Systems (MHS) at the point-of-care. As a result, healthcare organisations are investing heavily in mobile health initiatives with the expectation that users will employ the system to enhance performance. Despite widespread endorsement and support for the implementation of MHS, empirical evidence surrounding the benefits of MHS remains to be fully established. For MHS to be truly valuable, it is argued that the technological tool be infused within healthcare practitioners work practices and used to its full potential in post-adoptive scenarios. Yet, there is a paucity of research focusing on the infusion of MHS by healthcare practitioners. In order to address this gap in the literature, the objective of this study is to explore the determinants and outcomes of MHS infusion by healthcare practitioners. This research study adopts a post-positivist theory building approach to MHS infusion. Existing literature is utilised to develop a conceptual model by which the research objective is explored. Employing a mixed-method approach, this conceptual model is first advanced through a case study in the UK whereby propositions established from the literature are refined into testable hypotheses. The final phase of this research study involves the collection of empirical data from a Canadian hospital which supports the refined model and its associated hypotheses. The results from both phases of data collection are employed to develop a model of MHS infusion. The study contributes to IS theory and practice by: (1) developing a model with six determinants (Availability, MHS Self-Efficacy, Time-Criticality, Habit, Technology Trust, and Task Behaviour) and individual performance-related outcomes of MHS infusion (Effectiveness, Efficiency, and Learning), (2) examining undocumented determinants and relationships, (3) identifying prerequisite conditions that both healthcare practitioners and organisations can employ to assist with MHS infusion, (4) developing a taxonomy that provides conceptual refinement of IT infusion, and (5) informing healthcare organisations and vendors as to the performance of MHS in post-adoptive scenarios.
Resumo:
Can my immediate physical environment affect how I feel? The instinctive answer to this question must be a resounding “yes”. What might seem a throwaway remark is increasingly borne out by research in environmental and behavioural psychology, and in the more recent discipline of Evidence-Based Design. Research outcomes are beginning to converge with findings in neuroscience and neurophysiology, as we discover more about how the human brain and body functions, and reacts to environmental stimuli. What we see, hear, touch, and sense affects each of us psychologically and, by extension, physically, on a continual basis. The physical characteristics of our daily environment thus have the capacity to profoundly affect all aspects of our functioning, from biological systems to cognitive ability. This has long been understood on an intuitive basis, and utilised on a more conscious basis by architects and other designers. Recent research in evidence-based design, coupled with advances in neurophysiology, confirm what have been previously held as commonalities, but also illuminate an almost frightening potential to do enormous good, or alternatively, terrible harm, by virtue of how we make our everyday surroundings. The thesis adopts a design methodology in its approach to exploring the potential use of wireless sensor networks in environments for elderly people. Vitruvian principles of “commodity, firmness and delight” inform the research process and become embedded in the final design proposals and research conclusions. The issue of person-environment fit becomes a key principle in describing a model of continuously-evolving responsive architecture which makes the individual user its focus, with the intention of promoting wellbeing. The key research questions are: What are the key system characteristics of an adaptive therapeutic single-room environment? How can embedded technologies be utilised to maximise the adaptive and therapeutic aspects of the personal life-space of an elderly person with dementia?.
Resumo:
Focussing on Paul Rudolph’s Art & Architecture Building at Yale, this thesis demonstrates how the building synthesises the architect’s attitude to architectural education, urbanism and materiality. It tracks the evolution of the building from its origins – which bear a relationship to Rudolph’s pedagogical ideas – to later moments when its occupants and others reacted to it in a series of ways that could never have been foreseen. The A&A became the epicentre of the university’s counter culture movement before it was ravaged by a fire of undetermined origins. Arguably, it represents the last of its kind in American architecture, a turning point at the threshold of postmodernism. Using an archive that was only made available to researchers in 2009, this is the first study to draw extensively on the research files of the late architectural writer and educator, C. Ray Smith. Smith’s 1981 manuscript about the A&A entitled “The Biography of a Building,” was never published. The associated research files and transcripts of discussions with some thirty interviewees, including Rudolph, provide a previously unavailable wealth of information. Following Smith’s methodology, meetings were recorded with those involved in the A&A including, where possible, some of Smith’s original interviewees. When placed within other significant contexts – the physicality of the building itself as well as the literature which surrounds it – these previously untold accounts provide new perspectives and details, which deepen the understanding of the building and its place within architectural discourse. Issues revealed include the importance of the influence of Louis Kahn’s Yale Art Gallery and Yale’s Collegiate Gothic Campus on the building’s design. Following a tumultuous first fifty years, the A&A remains an integral part of the architectural education of Yale students and, furthermore, constitutes an important didactic tool for all students of architecture.
Resumo:
It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain
Resumo:
The conception of the FUELCON architecture, of a composite tool for the generation and validation of patterns for assigning fuel assemblies to the positions in the grid of a reactor core section, has undergone an evolution throughout the history of the project. Different options for various subtask were possible, envisioned, or actually explored or adopted. We project these successive, or even concomitant configurations of the architecture, into a meta-architecture, which quite not by chance happens to reflect basic choices in the field's history over the last decade.
Resumo:
This paper introduces a few architectural concepts from FUELGEN, that generates a "cloud" of reload patterns, like the generator in the FUELCON expert system, but unlike that generator, is based on a genetic algorithm. There are indications FUELGEN may outperform FUELCON and other tools as reported in the literature, in well-researched case studies, but careful comparisons have to be carried out. This paper complements the information in two other recent papers on FUELGEN. Moreover, a sequel project is outlined.
Resumo:
We continue the discussion of the decision points in the FUELCON metaarchitecture. Having discussed the relation of the original expert system to its sequel projects in terms of an AND/OR tree, we consider one further domain for a neural component: parameter prediction downstream of the core reload candidate pattern generator, thus, a replacement for the NOXER simulator currently in use in the project.
Resumo:
This paper describes the use of a blackboard architecture for building a hybrid case based reasoning (CBR) system. The Smartfire fire field modelling package has been built using this architecture and includes a CBR component. It allows the integration into the system of qualitative spatial reasoning knowledge from domain experts. The system can be used for the automatic set-up of fire field models. This enables fire safety practitioners who are not expert in modelling techniques to use a fire modelling tool. The paper discusses the integrating powers of the architecture, which is based on a common knowledge representation comprising a metric diagram and place vocabulary and mechanisms for adaptation and conflict resolution built on the Blackboard.
Resumo:
This paper presents an investigation into applying Case-Based Reasoning to Multiple Heterogeneous Case Bases using agents. The adaptive CBR process and the architecture of the system are presented. A case study is presented to illustrate and evaluate the approach. The process of creating and maintaining the dynamic data structures is discussed. The similarity metrics employed by the system are used to support the process of optimisation of the collaboration between the agents which is based on the use of a blackboard architecture. The blackboard architecture is shown to support the efficient collaboration between the agents to achieve an efficient overall CBR solution, while using case-based reasoning methods to allow the overall system to adapt and “learn” new collaborative strategies for achieving the aims of the overall CBR problem solving process.