995 resultados para Hazardous wastes sites
Resumo:
It was discovered experimentally that heteropolymolybdophosphoric acids (HPA) with Keggin and Dawson structure are inactive for H2O2-decomposition, while their salts (Fe3+, Cu2+, Co2+ and Mn2+) all possess more activity. It could be concluded that the act
Resumo:
With the method of high temperature solid state reaction and stockbarger, we synthesized a series of powder phosphors of KMgF3-Ce3+, KMg1-alphaMalphaF3-Ce3+(M = Be2+, Ca2+) and the single crystal of KMgF3-Ce3+. We tested their excitation and emission spectra, found two emission centers in KMgF3-Ce3+ and demonstrated that they resulted from different charge compensating ways. By the structural analysis on KMgF3-Ce-3+ from a four-cycle diffractometer and spectral analysis on KMg1-alphaMalphaF3-Ce3+(M = Be2+, Ca2+), we deduced that Ce3+ ion only.substituted K+ site in KMgF3.
Resumo:
The effect of simultaneously cultivating the pearl oyster Pinctada martensi and the red alga Kappaphycus alvarezii on growth rates of both species was investigated in laboratory and field studies conducted from December 1993 to June 1995. The two study sites were in subtidal areas 100 km apart off the east coast of Hainan Island, China. Pearl oysters were cultivated in the center of an algal farm and red alga was cultivated in the center of the pearl oyster farm. These field experiments showed higher growth rates of both P. martensi and K. alvarezii in a co-culture system than in a monospecies culture system. Laboratory studies showed that the algae removed nitrogenous wastes released by pearl oysters. Algae treated with pearl oyster wastes grew much faster than those without oyster wastes. Algae treated with the seawater to which NH4Cl, NaNO3 and NaNO2 were added grew at the same rate as those treated with natural seawater containing oyster nitrogenous wastes, suggesting that enhanced growth of algae in the co-culture system was largely due to nitrogenous metabolites of the pearl oysters. In the co-culture, growth of pearl oysters was positively influenced by the presence of rapidly growing algae but when seawater temperature decreased below 20 degrees C, the algae grew slowly and there was no measurable benefit of mixed culture to either algae or pearl oyster.
Resumo:
To investigate the effects of enhanced nutrient loading in estuarine waters on phytoplankton growth and microzooplankton grazing, we conducted monthly dilution experiments at 2 stations in Hong Kong coastal waters with contrasting trophic conditions. The western estuarine station (WE) near the Pearl River estuary is strongly influenced by freshwater discharge, while the eastern oceanic station (EO) is mostly affected by the South China Sea. Growth rates of phytoplankton were often limited by nutrients at EO, while nutrient limitation of phytoplankton growth seldom Occurred at WE due to the high level of nutrients delivered by the Pearl River, especially in the summer rainy season. Higher chlorophyll a, microzooplankton biomass, phytoplankton growth and microzooplankton grazing rates were found at WE than at EO. However, the increase in chlorophyll greatly exceeded the increase in phytoplankton growth rate, reflecting different response relationships to nutrient availability. Strong seasonality was observed at both stations, with temperature being an important factor affecting both phytoplankton growth and microzooplankton grazing rates. Picophytoplankton, especially Synechococcus, also exhibited great seasonality at EO, with summer abundances being 2 or 3 orders of magnitude higher than those during winter, Our results confirm that in eutrophic coastal environments, microzooplankton grazing is a dominant loss pathway for phytoplankton, accounting for the utilization of >50%, of primary production on average.
Resumo:
Ammonia adsorption studies reveal that the observed Lewis acidity in the zeolite MCM-22 is derived from at least two types of framework aluminum sites (Al(F)), that is, octahedral Al(F) and three-coordinate Al(F). Comparative ammonia or trimethylphosphine (TMP) adsorption experiments with MCM-22 confirm that octahedral Al species gives rise to the signal at delta(ISO) approximate to 0 in the (27)Al NMR spectrum; this is a superposition of two NMR signals from the different Al species on the water-re constructed zeolite surface. A sharp resonance assigned to framework Al reversibly transforms on ammonia adsorption to delta(ISO) (27)Al approximate to 55 from tetrahedral Al(F), while the broad peak is assigned to nonframework aluminium which results from hydrothermal treatment. This study also demonstrates the effectiveness of (27)Al magic angle spinning (MAS) and multiple quantum (MQ) MAS NMR spectroscopy as a technique for the study of zeolite reactions.
Resumo:
A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described. The obtained materials of MAS-5 are hydrothermally stable, which is shown by X-ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS-5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non-framework aluminium species in the samples was observed.