1000 resultados para Harmonic emission
Resumo:
Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.
Resumo:
Etched VCSEL sources are reported which avoid bandwidth collapse in multimode fibre using a simple coupling technique to control the launch. These devices have allowed better than over-filled launch bandwidth for alignment tolerances of ±7 microns.
Resumo:
The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.
Resumo:
Field emission from a series of tetrahedrally bonded amorphous-carbon (ta-C) films, deposited in a filtered cathodic vacuum arc, has been measured. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have threshold fields of the order 10-15 V/μm and optimally nitrogen doped films exhibited fields as low as 5 V/μm. In order to gain further understanding of the mechanism of field emission, the films were also subjected to H2, Ar, and O2 plasma treatments and were also deposited onto substrates of different work function. The threshold field, emission current, emission site densities were all significantly improved by the plasma treatment, but little dependence of these properties on work function of the substrate was observed. This suggests that the main barrier to emission in these films is at the front surface.
Resumo:
Nanocluster carbon films grown using a cathodic arc process at room temperature in the presence of background gases such as helium are found to be good electron emitters. The variation in the surface morphology and the corresponding emission characteristics of the films with change in helium partial pressure (5×10-4 to 50 Torr) during film growth are reported. The effect of helium partial pressure on clustering was studied for films grown at nitrogen partial pressures of 10-4 and 10-3 Torr. The surface morphology of the films varied from smooth through clusters (with sizes 50-200 nm) to fibrous films. The threshold field varied from 1 to 10 V/μm for an emission current density 1 μA/cm2.
Resumo:
The field emission properties of nanostructured carbon films deposited by cathodic vacuum arc in a He atmosphere have been studied by measuring the emission currents and the emission site density. The films have an onset field of ∼ 3 V/μm. The emission site density is viewed on a phosphor anode and it increases rapidly with applied field. It is assumed that the emission occurs from surface regions with a range of field enhancement factors but with a constant work function. The field enhancement factor is found to have an exponential distribution.