949 resultados para HYDROCARBON OXIDATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an important measure to understand oil and gas accumulation during petroleum exploration and development, Petroleum geological model is an integrated system of theories and methods, which includes sedimentology, reservoir geology, structural geology, petroleum geology and other geological theories, and is used to describe or predict the distribution of oil and gas. Progressive exploration and development for oil and gas is commonly used in terrestrial sedimentary basin in China for the oil and gas generation, accumulation and exploitation are very intricate. It is necessary to establish petroleum geological model, adaptive to different periods of progressive exploration and development practice. Meanwhile there is lack of an integrated system of theories and methods of petroleum geological model suitable for different exploration and development stages for oil and gas, because the current different models are intercrossed, which emphasize their different aspects. According to the characteristics of exploration and development for the Triassic oil and gas pool in Lunnan area, Tarim Basin, the Lunnan horst belt was selected as the major study object of this paper. On the basis of the study of petroleum geological model system, the petroleum geological models for different exploration and development stages are established, which could be applied to predict the distribution of oil and gas distribution. The main results are as follows. (1) The generation-accumulation and exploration-development of hydrocarbon are taken as an integrated system during the course of time, so petroleum exploration and development are closely combined. Under the guidance of some philosophical views that the whole world could be understood, the present writer realizes that any one kind of petroleum geological models can be used to predict and guide petroleum exploration and development practice. The writer do not recognize that any one kind of petroleum geological models can be viewed as sole model for guiding the petroleum exploration and development in the world. Based on the differences of extents and details of research work during various stage of exploration and development for oil and gas, the system of classification for petroleum geological models is established, which can be regarded as theoretical basis for progressive petroleum exploration and development. (2) A petroleum geological model was established based on detailed researches on the Triassic stratigraphy, structure, sedimentology and reservoir rocks in the Lunnan area, northern Tarim Basin. Some sub-belt of hydrocarbon accumulation in the Lunnan area are divided and the predominate controlling factors for oil and gas distribution in the Lunnan area are given out. (3) Geological models for Lunnan and Jiefangqudong oil fields were rebuilt by the combinations of seismology and geology, exploration and development, dynamic and static behavior, thus finding out the distribution of potential zones for oil and gas accumulations. Meanwhile Oil and gas accumulations were considered as the important unit in progressive exploration and development, and the classification was made for Lunnan Triassic pools. Petroleum geological model was created through 3D seismic fine interpretation and detailed description of characteristics of reservoir rocks and the distribution of oil and gas, especially for LN3 and LN26 well zones. The possible distribution of Triassic oil traps and their efficiency in the Lunnan area has been forecasted, and quantitative analysis for original oil(water) saturation in oil pools was performed. (4) The concept of oil cell is proposed by the writer for the first time. It represents the relatively oil-rich zones in oil pool, which were formed by the differences of fluid flows during the middle stage of reservoir development. The classification of oil cells is also given out in this paper. After the studies of physical and numerical modeling, the dominant controlling factors for the formation of various oil cells are analyzed. Oil cells are considered as the most important hydrocarbon potential zones after first recovery, which are main object of progressive development adjustment and improvement oil recovery. An example as main target of analysis was made for various oil cells of Triassic reservoir in the LN2 well area. (5) It is important and necessary that the classification of flow unit and the establishment of geological model of flow unit based on analysis of forecast for inter-well reservoir parameters connected with the statistical analysis of reservoir character of horizontal wells. With the help of self-adaptive interpolation and stochastic simulation, the geological model of flow units was built on the basis of division and correlation of flow units, with which the residual oil distribution in TIII reservoir in the LN2 well area after water flooding can be established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an important part of petroleum exploration areas in the west of China, the north part of Qaidam basin is very promising in making great progress for petroleum discovery. But there are still many obstacles to overcome in understanding the process of petroleum formation and evaluation of oil & gas potential because of the complexity of geological evolution in the study area. Based upon the petroleum system theory, the process of petroleum formation is analyzed and the potential of oil & gas is evaluated in different petroleum systems by means of the modeling approach. The geological background for the formation of petroleum systems and the consisting elements of petroleum systems are described in detail. The thickness of strata eroded is estimated by means of vitrinite reflectance modeling, compaction parameter calculating and thickness extrapolating. The buried histories are reconstructed using the transient compaction model, which combines of forward and reverse modeling. The geo-history evolution consists of four stages - sedimentation in different rates with different areas and slow subsidence during Jurassic, uplifting and erosion during Cretaceous, fast subsidence during the early and middle periods of Tertiary, subsidence and uplifting in alternation during the late period of Tertiary and Quaternary. The thermal gradients in the study area are from 2.0 ℃/100m to 2.6 ℃/100m, and the average of heat flow is 50.6 mW/m~2. From the vitrinite reflectance and apatite fission track data, a new approach based up Adaptive Genetic Algorithms for thermal history reconstruction is presented and used to estimate the plaeo-heat flow. The results of modeling show that the heat flow decreased and the basin got cooler from Jurassic to now. Oil generation from kerogens, gas generation from kerogens and gas cracked from oil are modeled by kinetic models. The kinetic parameters are calculated from the data obtained from laboratory experiments. The evolution of source rock maturation is modeled by means of Easy %Ro method. With the reconstruction of geo-histories and thermal histories and hydrocarbon generation, the oil and gas generation intensities for lower and middle Jurassic source rocks in different time are calculated. The results suggest that the source rocks got into maturation during the time of Xiaganchaigou sedimentation. The oil & gas generation centers for lower Jurassic source rocks locate in Yikeyawuru sag, Kunteyi sag and Eboliang area. The centers of generation for middle Jurassic source rocks locate in Saishenteng faulted sag and Yuka faulted sag. With the evidence of bio-markers and isotopes of carbonates, the oil or gas in Lenghusihao, Lenghuwuhao, Nanbaxian and Mahai oilfields is from lower Jurassic source rocks, and the oil or gas in Yuka is from middle Jurassic source rocks. Based up the results of the modeling, the distribution of source rocks and occurrence of oil and gas, there should be two petroleum systems in the study area. The key moments for these two petroleum, J_1-R(!) and J_2-J_3, are at the stages of Xiaganchaigou-Shangyoushashan sedimentation and Xiayoushashan-Shizigou sedimentation. With the kinetic midels for oil generated from kerogen, gas generated from kerogen and oil cracked to gas, the amount of oil and gas generated at different time in the two petroleum systems is calculated. The cumulative amount of oil generated from kerogen, gas generated from kerogen and gas cracked from oil is 409.78 * 10~8t, 360518.40 * 10~8m~3, and 186.50 * 10~8t in J_1-R(!). The amount of oil and gas generated for accumulation is 223.28 * 10~8t and 606692.99 * 10~8m~3 in J_1-R(!). The cumulative amount of oil generated from kerogen, gas generated from kerogen and gas cracked from oil is 29.05 * 10~8t, 23025.29 * 10~8m~3 and 14.42 * 10~8t in J_2-J_3 (!). The amount of oil and gas generated for accumulation is 14.63 * 10~8t and 42055.44 * 10~8m~3 in J_2-J_3 (!). The total oil and gas potential is 9.52 * 10~8t and 1946.25 * 10~8m~3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geofluid in sedimentary basins is related to petroleum generation, migration, accumulation and preservation, and is a topic of geological frontier. By integrating the multi-discipline methods of petroleum geochemistry, sedimentology, hydrogeology, petroleum geology and experimental geochemistry, the thesis has carried out experiments of microcline dissolution in solutions with organic acids, crude oil, brines with high total dissolved solids (TDS), and has dealt with Al distribution between the crude oil and the brines after the experiments. Cases for study includes Central Tarim, Hetianhe Gas Field and Kucha forland basin with data containing fluid chemistry and isotopic compositions, thin sections of sandstones and carbonates, homogenization temperatures and salinities of fluid inclusions, isotopic compositions of bulk rock and autigenic minerals. The aims are to elucidate fluid origin and flow in the three areas, effect of hydrocarbon emplacement on diagenesis, and to show occurrence of microbe-mediated, and thermochemical sulfate reduction in the Tarim Basin. Microcline dissolution experiments show that after 100 hour, part of the dissolved Al distributes in the crude oil, and the Al concentrations in the crude oil rise when organic acids are added. The result can be used to explain that most oilfield waters in the Tarim Basin are characterized by less than 3mg/L Al. Crude oil added to the solutions can enhance microcline dissolution, which is also observed in the case - Silurian sandstones with early crude oil emplacement in the Central Tarim. Al and Si have higher concentrations in the experiments of oxalic acid than of acetic acid under the same pH conditions, suggesting that there exist Al-oxalate and Si-oxalate complexes. Presence of acetate can enhance the activity of Ca and Al, but Al concentrations have not been increased significantly due to formation of small Al-acetate complex during the experiments. Relationships between δD and δ~(18)O in conjunction with chemistry of oilfield waters show that the waters are evaporated connate waters, which subsequently mixed with meteoric water, and were influenced by water-rock interactions such as salt dissolution, dolomitization of calcite, albitization of feldspar. In the Hetianhe Gas Field where salt dissolution took place, δD and δ~(18)O values can be used to trace nicely meteoric water recharge area and flow direction, but TDS can not. Part of the waters have high TDS but very light δD and δ~(18)O. When combined with paleo-topography, or fluid potentials, meteoric water is suggested to flow eastward in the Hetianhe Gas Field, which is the same with the Central Tarim. Whist in the Kuche forland basin, meteoric water may have permeated Cambrian-Ordovician strata. Relationship between ~(87)Sr/~(86)Sr and 1/Sr can be used to indicate migration and mixing of brines from carbonate strata (low ~(87)Sr/~(86)Sr ratio but high Sr content), clastic strata (high ~(87)Sr/~(86)Sr ratio but low Sr content) and crystalline basement (high ~(87)Sr/~(86)Sr ratio and heavy δ~(18)O value). Using this approach, it can be found that ~(87)Sr-depleted brine from Ordovician carbonates have migrated up to and mixed with ~(87)Sr-enriched waters from Silurian and Carboniferous sandstones, and that Silurian brines have mixed with meteoric water. In the Kuche forland basin, brines from the Cambrian and Ordovician carbonates have higher ~(87)Sr/~(86)Sr ratios than those from the overlying sandstones, when combined with chemistry, δ~(15)N and ~3He/~4He ratios of the coexisting natural gases, suggesting that the brines were derived from the basement. There exists some debate on the effect of hydrocarbon emplacement on mineral diagenesis. Case-study from Silurian sandstones in the Central Tarim show that quartz has kept overgrowing secondarily when oil saturation was decreased by meteoric water flushing subsequently to hydrocarbon emplacement. Silicon precipitates on the water-wet quartz surface, leading to decreased Si concentration close to the surface. A Si grads can result in Si diffusion, which supplies Si for quartz overgrowth. Hydrocarbon oxidation-sulfate reduction is an important type of organic-inorganic interaction. Not only can it make secondary alteration of hydrocarbons, but generate H_2S and CO_2 gases which can improve reservoir property. Thermochemical sulfate reduction took place at the temperatures more than 125 ℃ to 140 ℃ in the Cambrian-Ordovician carbonates, the products - H_2S and CO_2 gases migrated up to the Silurian, and precipitated as pyrite and calcite, respectively. The pyrite has an average δ~(34)S value close to those of Ordovician seawater and anhydrite, and calcite has δ~(13)C value as low as -21.5‰. In the Hetianhe Gas Field, sulfate reduction bacteria carried by meteoric water flowing eastward may have preferentially depleted ~(12)C of light hydrocarbon gases, and results in heavier δ~(13)C values of the residual hydrocarbon gases and higher molar CO_2 in the natural gases in the west than in the east. Coexisting pyrite has δ~(34)S values as low as -24.9‰.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a kind of special lithologic ones, Igneous rock oil and gas pool is more and more paid attention, and it has different forming condition and distribution from conventional ones, such as various terrane distribution types, serious reservoir anisotropy, complicated hydrocarbon-bearing, so there is not successful experience to follow for exploration and development of this complex subtle oil and gas pool at present. For an example of Igneous oil and gas pool of Luo151 area in Zhanhua seg, Eastern China, this article study the difficult problem, including petrologic nd lithofacies analysis, Origin, invasion age and times of Igneous rock, reservoir anisotropy, Geological Modeling, Igneous reservoir synthesis evaluation. forming condition and distribution are studied synthetically, and an integrated method to predict igneous rock oil and gas pool is formed, which is evaluated by using development data. The Igneous rock is mainly diabase construction in Luo151 area of Zhanhua Sag, and petrologic types include carbonaceous slate, hornfels, and diabases. Based on analyzing synthetically petrologic component, texture and construct, 4 lithofacies zones, such as carbonaceous slate subfacies, hornfels subfacies containing cordierite and grammite, border subfacies and central subfacies, are divided in the diabase and wall rock. By studying on isotopic chronology, terrane configuration and imaging logging data, the diabase intrusion in Zhanhua Sag is formed by tholeiite magma emplacing in Shahejie formation stratum on the rift tension background Lower Tertiary in North China. The diabase intrusion of Luo151 is composed possibly of three periods magma emplacement. There is serious anisotropy in the diabase reservoirs of Luo151 in Zhanhua Sag. Fracture is primary reservoir space, which dominated by tensile fracture in high obliquity, and the fracture zones are mainly developed round joint belt of igneous rock and wall rock and position of terrane thickness changing rapidly. The generation materials of the reservoirs in Luo151 igneous oil pools consist of Intergranular micropore hornfels, condensate blowhole-solution void diabase condensate edge, the edge and center of the condensate seam diabase, of which are divided into horizontal, vertical and reticulated cracks according fracture occurrence. Based on the above research, a conceptual model of igneous rock reservoir is generated, which is vertically divided into 4 belts and horizontally 3 areas. It is built for the first time that classification evaluation pattern of igneous rock reservoir in this area, and 3 key wells are evaluated. The diabase construction is divided into grammite hornfels micropore type and diabase porous-fracture type reservoirs. The heavy mudstone layers in Third Member of Shahejie formation (Es3) provide favorable hydrocarbon source rock and cap formation, diabase and hornfels belts serve as reservoirs, faults and microcracks in the wall rocks as type pathways for oil and gas migration. The time of diabase invasion was about in the later deposition period of Dongying Formation and the middle of that of Guantao Formation, the oil generated from oil source rock of Es3 in the period of the Minghuazhen formation and is earlier more than the period of diabase oil trap and porous space forming. Based on geological and seismic data, the horizon of igneous rocks is demarcated accurately by using VSP and synthetic seismogram, and the shape distribution and continuity of igneous rocks are determined by using cross-hole seismic technology. The reservoir capability is predicted by using logging constraining inversion and neural network technology. An integrated method to predict igneous rock oil and gas pool is formed. The study is appraised by using development data. The result show the reservoir conceptual model can guide the exploration and development of oil pool, and the integrated method yielded marked results in the production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lukeqin arc belt is a compound structure generated by multi-movements and composed of 6 sub-structural zones, which are connected by Huoyanshan Mountain. General characteristics of the arc belt are multi-patterns of structure, multi-phases for petroleum, multi-types of trap and multi-layers for reservoirs. As a part of the eastern Lukeqin arc belt located on the south of Taibei depression, Lukeqin structural zone behaves as a complex faulted-fold zone, in which the formation and distribution of hydrocarbons are controlled by structures. As the dominant source of dynamics for the second migration of hydrocarbon, structure stress field is closely related with the potentials of hydrodynamics. Results derived from the simulations of stress field by finite element method indicate that the northwest tending faults prefer seal to the northeast tending ones. The reason is that the northwest tending faults were squeezed more strongly than the northeast tending ones. Therefor, the northeast tending faults become always the paths for oil to migrate southeastward. Lukeqin structural zone is the main site for oil to concentration because it is surrounded by high stress. Situated on the front of the foreland basin of Turpan-Hami, Lukeqing arc belt is a dam to hold back the southward migrating oil from Shengbei depression. The axis line of Shenquan-Shengnan-Yanmuxi, Lukeqin and Yubei controls the migrating paths and concentrating process of oil and gas. Results derived from stress simulation and structure analyses indicate consistently that both Yubei and Lukeqin structural zones are the favorite areas for oil to migrate. The generally southward paths for oil to migrate out of Taibei depression can be two ways. One of them is from Taibei depression to Yubei structural zone and the other is from Taibei depression to Lukeqin structural zone. By the both ways, oil migrated upward along the faults and southeastward along the structural axis to concentrate in either Permian or Triassic system. The newly ascertained path for oil migration, which is accurately southeastward instead of coarsely southward, indicates the directions for further explorations on the compound Lukeqin block zone. Five kinds of seal models of fault are all found in Lukeqin block zone by studying the seal features of faults occurred in the zone. Having studied the fault seal and their controlling factors by fuzzy set method, the paper deems that the northwest tended faults are better than the northeast tended ones for oil to concentrate. The most important factors to decide the seal extent of faults in this zone are the characteristics of main stress and fluids instead of capillary pressure differences between the two sides of fault and smear mud factors. There exist seal differences not only between the faults of different time but also between the sections within a fault due to the variation of depths, strata and positions. The general distribution rules of reservoirs were dominated by the seal characteristics of a fault during the time reservoirs formed. While the current features of fault seal decide the conservation of reservoirs and heights of oil accumulations. Seal or not of a fault is not absolute because the essential for fault to seal is the distribution of permeability of fault zone. Therefor, the multi cyclical activities of faults create the space-time variation of seal features of the fault. Totally, the seal extent of the faults within the area is not as perfect as to accumulate ordinary crude. Crude oil can only be sealed when it becomes viscous. Process for crude oil to become viscous and viscous happened strongly because of the fault-fold movements. Shallowly burying and even revealing of the objective layers of the reservoirs made the crude oil to be thickened by water washing biologically degradation and oxidation degradation. The northwestward deepening during or after the reservoir formation of the structural zone provided the power for oil to migrate one or more times. The main reason for oil accumulation is the formation of Lukeqin block zone during Xishanyao stage, middle Jurassic Period, Early Yanshanian Movement. While the main reason for reservoir conservation is the placidity of Triassic blocks after the formation of reservoirs. Contrasting to former opinions, it is concluded that the reservoirs in Lukeqin zone, including viscous reservoirs, were formed by one time but not more times. So the author proposes the opinion that the reservoirs of viscous oil were formed by viscous oil migration under the conditions of aptitude sets of fault seals controlled by fluid and other factors. To grope the distribution rules outside Taibei depression and discuss the formation mechanism of Anjurassic reservoirs, it is necessary to study the dominate factors for the formation of reservoirs in Lukeqin structural zone such as structural stress, fault seals and thickening mechanism of crude oil. Also, the necessary studies are the key to break through the Taibei depression and Anjurassic systems. Therefor, they are significant for the future exploration and reserve increasing of hydrocarbon within the Turpan-Hami basin. The paper studied the distribution rules of block reservoirs and forecasted the favorable zones for further exploration in Turpan-Hami basin. Conclusions can be useful for not only the exploration in the area but also the theory consult in the adjacent areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the present-day thermal field features, evolution and their connections to hydrocarbon generation of the three continental margin basins-the Yinggehai (Yingge Sea), Qiongdongnan(southeast Qiong), and Pear River Mouth basins-in northern South China Sea, based on available data from drillings, loggings, seismic cross-sections, BHTs, thermal indicators (Ro%, inclusion, etc) and geopressure measurements. After studying of present-day distribution of geothermal field and thermal disturbance of fluid in the sedimentary strata, the author discovered that the distribution of gas fields in Yinggehai Basin are closely related to the distribution of anomalously high thermal gradient area, whereas it is not the case for the Pear River Mouse Basin. And detailed processing of the fluid inclusion data indicates that geothermal fluids activated frequently in this area, and they may mainly be derived upward from the overpressure and hydrocarbon-generating beds, 3000-4500 m in depth. Therefore, the abnormal gradients in sedimentary beds were mainly caused by the active geothermal fluids related to hydrocarbon migrating and accumulating in this area. Because of the effect of overpressure retarding on vitrinite reflectance, the thermal indicators for thermal history reconstruction should be assessed before put into use. Although some factors, such as different types of kerogen, heating ratio, activities of thermal fluids and overpressure, may have effects on the vitrinite reflectance, under the circumstance that thermal fluids and overpressure co-exist, overpressure retarding is dominant. And the depth and correction method of overpressure retarding were also determined in this paper. On the basis of reviewing the methods of thermal history studies as well as existing problems, the author believes that the combination of thermal-indicator-inversion and tectono-thermal modeling is an effective method of the thermal history reconstruction for sedimentary basins. Also, a software BaTherMod for modeling thermal history of basins was successfully developed in this work. The Yinggehai Basin has been active since Tertiary, and this was obviously due to its tectonic position-the plate transition zone. Under the background of high thermal flow, long-term quick subsidence and fluid activities were the main reasons that lead to high temperature and overpressure in this basin. The Zhujiangkou Basin, a Tertiary fault-basin within the circum-Pacific tectonic realm, was tectonically controlled by the motion of the Pacific Plate and resembles the other petroliferous basins in eastern China. This basin developed early, and characterized intensive extension in the early stage and weak activity in the later stage of its development. Whereas the Qiongdongnan Basin was in a weak extension early and intensity of extension increased gradually. The relative geographical locations and the extensional histories of three basins ilustrate that the northern continental margin of South China Sea spread from south to north. On the other hand, the Qiongdongnan and Yinggehai Basins may have been controlled by the same tectonic regime since later Tertiary, whereas the Zhujiangkou Basin was not meaningfully influenced. So, the tectono-thermal evolution character of the Qiongdonnan basin should be closely to the other two. It may be concluded that the three basins have been developed within the active continental margin since Tertiary, and the local lithosphere might undergo intensive extension-perhaps two or three times of episodic extension occurred. Extension lead to large tectonoc subsidence and extreme thick Tertiary sediments for hydrocarbon generation in the basins. In response to the periodic extension of the basins, the palaeothermal flow were also periodical. The three basins all have the characteristics of multi-phase thermal evolutions that is good for oil-gas generation. And the overpressure expands the depth range of oil-gas habitat, which is meaningful to petroleum exploration in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, chimney structure has been proved one of important indicators and a useful guide to major petroleum fields exploration through their exploration history both at home and abroad. Chimney structure, which has been called "gas chimney" or "seismic chimney", is the special fluid-filled fracture swarm, which results from the boiling of active thermal fluid caused by abruptly decreasing of high pressure and high temperature in sedimentary layers of upper lithosphere. Chimney structure is well developed in continental shelf basin of East China Sea, which indicates the great perspectives of petroleum resources there. However, the chimney structure also complicated the petroleum accumulation. So the study of chimney structure on its formation, its effect on occurrence and distribution of petroleum fields is very important not only on theoretical, but also on its applied research. It is for the first time to make a clear definition of chimney structure in this paper, and the existence and practical meaning of chimney structure are illustrated. Firstly, on the viewpoint of exploration, this will amplify exploration area or field, not only in marine, but also on continent. Secondly, this is very important to step-by-step exploration and development of petroleum fields with overpressure. Thirdly, this will provide reference for the study on complex petroleum system with multi-sources, commingled sources and accumulation, multi-stage accumulations, and multi-suits petroleum system in the overlay basin. Fourthly, when the thermal fluid enters the oceanic shallow layer, it can help form gas hydrate under favorable low-temperature and high-pressure conditions. Meanwhile, the thermal fluid with its particular component and thermal content will affect the physical, chemical and ecological environments, which will help solving the problem of global resources and environment. Beginning from the regional tectonic evolution characteristics, this paper discussed the tectonic evolution history of the Taibei depression, then made an dynamical analysis of the tectonic-sedimentary evolution during the Mesozoic and Cenozoic for the East China Sea basin. A numerical model of the tectonic-thermal evolution of the basin via the Basin-Mod technique was carried out and the subsidence-buried history and thermal history of the Taibei depression were inverse calculated: it had undergone a early rapid rift and sag, then three times of uplift and erosion, and finally depressed and been buried. The Taibei depression contains a huge thick clastic sedimentary rock of marine facies, transitional facies and continental facies on the complex basement of ante-Jurassic. It is a part of the back-arc rifting basins occurred during the Mesozoic and Cenozoic. The author analyzed the diagenesis and thermal fluid evolution of this area via the observation of cathodoluminescence, scanning electron microscope and thin section, taking advantage of the evidences of magma activities, paleo-geothermics and structural movement, the author concluded that there were at least three tectonic-thermal events and three epochs of thermal-fluid activities; and the three epochs of thermal-fluid activities were directly relative to the first two tectonic-thermal events and were controlled by the generation and expulsion of hydrocarbon in the source rock simultaneously. Based on these, this paper established the corresponding model between the tectonic-thermal events and the thermal-fluid evolution of the Taibei Depression, which becomes the base for the study on the chimney structures. According to the analyses of the gas-isotope, LAM spectrum component of fluid inclusion, geneses of CO_2 components and geneses of hydrocarbon gases, the author preliminarily verified four sources of the thermal fluid in the Taibei Depression: ① dehydration of mud shale compaction, ② expulsion of hydrocarbon in the source rock; ③ CO_2 gas hydro-thermal decomposition of carbonatite; ④magma-derived thermal fluid including the mantle magma water and volatile components (such as H_2O, CO_2, H_2S, SO_2, N_2 and He etc.). On the basis of the vitrinite reflectance (Ro), homogenization temperature of fluid inclusion, interval transit time of major well-logging, mud density of the wells, measured pressure data and the results of previous studies, this paper analyzed the characteristics of the geothermal fields and geo-pressure fields for the various parts in this area, and discussed the transversal distribution of fluid pressure. The Taibei depression on the whole underwent a temperature-loss process from hot basin to cold basin; and locally high thermal anomalies occurred on the regional background of moderate thermal structure. The seal was primarily formed during the middle and late Paleocene. The overpressured system was formed during the middle and late Eocene. The formation of overpressured system in Lishui Sag underwent such an evolutionary process as "form-weaken-strengthen-weaken". Namely, it was formed during the middle and late Eocene, then was weakened in the Oligocene, even partly broken, then strengthened after the Miocene, and finally weakened. The existence of the thermal fluid rich in volatile gas is a physical foundation for the boiling of the fluid, and sharply pressure depletion was the major cause for the boiling of the fluid, which suggests that there exists the condition for thermal fluid to boil. According to the results of the photoelastic simulation and similarity physical experiments, the geological condition and the formation mechanism of chimnestructures are summarized: well compartment is the prerequisite for chimney formation; the boiling of active thermal fluid is the original physical condition for chimney formation; The local place with low stress by tension fault is easy for chimney formation; The way that thermal fluid migrates is one of the important factors which control the types of chimney structures. Based on where the thermal fluid come from and geometrical characteristics of the chimney structures, this paper classified the genetic types of chimney structures, and concluded that there existed three types and six subtypes chimney structures: organic chimney structures generated by the hydrocarbon-bearing thermal fluid in middle-shallow layers, inorganic and commingling-genetic chimney structures generated by thermal fluid in middle-deep layers. According to the seismic profiles interpretations, well logging response analysis and mineralogical and petrological characteristics in the study area, the author summarized the comprehensive identification marks for chimney structures. Especially the horizon velocity analysis method that is established in this paper and takes advantage of interval velocity anomaly is a semi-quantitative and reliable method of chimney structure s identification. It was pointed out in this paper that the occurrence of the chimney structures in the Taibei depression made the mechanism of accumulation complicated. The author provided proof of episodic accumulation of hydrocarbon in this area: The organic component in the boiling inclusion is the trail of petroleum migration, showing the causality between the boiling of thermal fluid and the chimney structures, meanwhile showing the paroxysmal accumulation is an important petroleum accumulation model. Based on the evolutionary characteristics of various types of chimney structures, this paper discussed their relationships with the migration-accumulation of petroleum respectively. At the same time, the author summarized the accumulating-dynamical models associated with chimney structures. The author analyzed such accumulation mechanisms as the facies state, direction, power of petroleum migration, the conditions of trap, the accumulation, leakage and reservation of petroleum, and the distribution rule of petroleum. The author also provides explanation for such practical problems the existence of a lot of mantle-derived CO_2, and its heterogeneous distribution on plane. By study on and recognition for chimney structure, the existence and distribution of much mantle-derived CO_2 found in this area are explained. Caused by tectonic thermal activities, the deep magma with much CO_2-bearing thermal fluid migrate upward along deep fault and chimney structures, which makes two wells within relatively short distance different gas composition, such as in well LF-1 and well LS36-1-1. Meanwhile, the author predicted the distribution of petroleum accumulation belt in middle-shallow layer for this area, pointed out the three favorable exploration areas in future, and provided the scientific and deciding references for future study on the commingling-genetic accumulation of petroleum in middle-deep layer and the new energy-gas hydrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiyang & Changwei depressions are two neighboring depressions in Bahai Bay Basin, the famous oil rich basin in East China. The exploration activities in the past 40 years has proved that, within the basins, there exists not only plentiful sandstone hydrocarbon reservoirs (conventional), but also abundant special reservoirs as igneous rock, mudstone and conglomerate ones which have been knowing as the unconventional in the past, and with the prospecting activity is getting more and more detailed, the unconventional reservoirs are also getting more and more important for further resources, among which, the igneous lithological reservoir be of significance as a new research and exploration area. The purpose of this paper is, with the historical researches and data as base, the System Theory, Practice Theory and Modern Comprehensive Petroleum Geology Theory as guide, the theoretical and practice break through as the goal, and the existing problems in the past as the break through direction, to explore and establish a valid reservoir formation and distribution models for igneous strata in the profile of the eastern faulted basins. After investigating the distribution of the igneous rocks and review the history of the igneous rocks reservoirs in basins, the author focused on the following issues and correspondingly the following progresses have been made: 1.Come to a new basin evolution and structure model named "Combined-Basin-bodies Model" for Jiyang even Eastern faulted basins based on the study on the origin and evolution of Jiyang & Changwei basins, depending on this model, every faulted basin in the Bo-hai Bay Basin is consisted of three Basin-Bodies including the Lower (Mesozoic), Middle (Early Tertiary) and the Upper (Late Tertiary) Bodies, each evolved in different geo-stress setting and with different basin trend, shape and igneous-sedimentary buildings system, and from this one to next one, the basin experienced a kind of process named "shape changing" and "Style changing". 2. Supposed a serious of new realizations as follows (1) There were "multi-level magma sources" including Upper mantel and the Lower, Middle and even the Upper Shell magma Chambers in the historical Magma Processes in the basins; (2) There were "multi-magma accessing or pass" from the first level (Mantel faults) to the second, third and fourth levels (that is the different levels of fault in the basin sediment strata) worked in the geo-historical and magma processes; (3) Three tectonic magma cycles and more periods have been recognized those are matched with the "Basin -body-Model" and (4)The geo-historical magma processes were non-homogeneous in time and space scale and so the magma rocks distributed in "zones" or "belts". 3. The study of magma process's effect on basin petroleum conditions have been made and the following new conclusions were reached: (1) the eruptive rocks were tend to be matched with the "caped source rock", and the magma process were favorable to the maturing of the source rocks. (2) The magma process were fruitful to the accumulation of the non-hydrocarbon reservoirs however a over magma process may damage the grade of resource rock; (3) Eruptive activity provided a fruitful environment for the formation of such new reservoir rocks as "co-eruptive turbidity sandstones" and "thermal water carbonate rocks" and the intrusive process can lead to the origin of "metamorphism rock reservoir"; (4) even if the intrusive process may cause the cap rock broken, the late Tertiary intrusive rocks may indeed provide the lateral seal and act as the cap rock locally even regionally. All above progresses are valuable for reconstructing the magma-sedimentary process history and enriching the theory system of modem petroleum geology. 4. A systematic classification system has been provided and the dominating factors for the origin and distribution of igneous rock reservoirs have been worked out based on the systematic case studies, which are as follows: (1) The classification is given based on multi-factors as the origin type, litho-phase, type of reservoir pore, reservoir ability etc., (2) Each type of reservoir was characterized in a detailed way; (3) There are 7 factors dominated the intrusive reservoir's characteristics including depth of intrusion, litho-facies of surrounding rocks, thickness of intrusive rock, intrusive facies, frequency and size of the working faults, shape and tectonic deformation of rock, erosion strength of the rock and the time of the intrusion ect., in the contrast, 4 factors are for eruptive rocks as volcanic facies, frequency and size of the working faults, strength of erosion and the thermal water processing. 5. Several new concept including "reservoir litho-facies", "composite-volcanic facies" and "reservoir system" ect. Were suggested, based on which the following models were established: (1) A seven reservoir belts model for a intrusive unit profile and further more, (2) a three layers cubic model consisted of three layer as "metamorphic roe layer", "marginal layer" and "the core"; (3) A five zones vertical reservoir sequence model consisted of five litho-facies named A, B, C, D and E for a original lava unit and furthermore three models respectively for a erosion, subsidence and faulted lava unit; (4) A composite volcanic face model for a lava cone or a composite cone that is consisted of three facies as "crater and nearby face", "middle slope" and "far slope", among which, the middle slope face is the most potential reservoir area and producible for oil & gas. 6. The concept of "igneous reservoir" was redefined as the igneous, and then a new concept of "igneous reservoir system" was supposed which means the reservoir system consisted of igneous and associated non-igneous reservoirs, with non-hydrocarbon reservoir included. 7. The origin and distribution of igneous reservoir system were probed and generalized for the exploration applications, and origin models of the main reservoir sub-systems have been established including those of igneous, related non-igneous and non-hydrocarbon. For intrusive rocks, two reservoir formation models have been suggested, one is called "Original or Primary Model", and the another one is "Secondary Model"; Similarly, the eruptive rock reservoirs were divided in three types including "Highly Produced", "Moderately Produced" and "Lowly Produced" and accordingly their formation models were given off; the related non-igneous reservoir system was considered combination of eight reservoirs, among which some ones like the Above Anticline Trap are highly produced; Also, the non-hydrocarbon. Trap system including five kinds of traps was discussed. 8. The concept models for four reservoir systems were suggested, which include the intrusive system consisted of 7 kinds of traps, the land eruptive system with 6 traps, the under water eruptive system including 6 kinds of traps and the non-hydrocarbon system combined by 5 kinds of traps. In this part, the techniques for exploration of igneous reservoir system were also generalized and probed, and based on which and the geological progresses of this paper, the potential resources and distributions of every reservoir system was evaluated and about 186 millions of reserves and eight most potential non-hydrocarbon areas were predicted and outlined. The author believe that the igneous reservoir system is a very important exploration area and its study is only in its early stage, the framework of this paper should be filled with more detailed studies, and only along way, the exploration of igneous reservoir system can go into it's really effective stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on achievements of thirty years of hydrocarbon exploration, this paper uses the modern theories and methods of sedimentology and oil accumulation to study the origin and distribution features of four sandbodies of Gaoqing, Fanjia, Zhenglizhuang and Jinjia from the third member to the lower second member of Shahejie Formation in detail. Various geophysical methods are also used to explain and to predict the spatial distribution of sandbodies, which further shows mechanism and the model of oil accumulation and illuminates the disciplinarians of oil enrichment and its controlling factors in the study area. The most favourable oil pools predicted by this paper have significant economic and social benefits, which has been confirmed by the exploration. The main conclusions and knowledge includes: (1) Resolving the problems, which remain unresolvable for a long time in the western area of Boxing depression, about the original environment and the spatial distribution of sandbodies of Gaoqing, Fanjia, Zhenglizhuang and Jinjia, and illuminating their relationships. It is suggested that two deltas or delta-related sandbody sediments, which include the delta sandbodies of Jinjia and Gaoqing and their frontal turbidite fan sandbody, are developed in the second and third members of Shahejie Formation. The sandbodies of Fanjia, Gaoqing and Zhenglizhuang are components of Gaoqing delta and belong to the sediments of various periods in different part of the delta. Whereas, the sandbody of Jinjia belong to the Jinjia delta or fan-delta created by the uplift of the Western Shandong and in some areas shows the features of juxtaposition, superimposed deposition and fingeration with the sandbodies of Gaoqing and Zhenglizhuang. (2)Proposing that the sandbodies of different origins in the deltas of Gaoqing and Jinjia have obvious different reservoir qualities, among which the delta frontal bedded sandbodies in the second member of Shahejie Formation in Zhenglizhuang are the best ones and the turbidite sandbody of Fanjia is relatively worse. This shows the direction of further reservoir prediction. (3) According to modern petroleum system theory and continental pool-formation theory, the author divided the western area of Boxing depression into the Jinjia—Zhenglizhuang—Fanjia nose structure belt pool-formation system and the Gaoqing fracture belt pool-formation system. The study area is predominantly located in the former belt and subdivided into pool-formation sub-systems of Zhenglizhuang-Fanjia and Jinjia, which have the source rock of mudstone and oil shale from the upper forth member and the third member of Shahejie Formation in Boxing depression. The hydrocarbon migration and accumulation are controlled by Jinjia-Zhenglizhuang-fanjia nose structure and Gaoqing fracture. (4)Proposing that compared with the best developed sandbodies and traps in the west area of Boxing, the source from the Boxing depression is not sufficient, which is the fundamental reason that the hydrocarbon resources in mid-west area is less than in the east of Boxing. (5) Under the direction of the new theory (fluid compartments theory) and new method of modern pool-formation mechanism, two kinds of pool-formation model are established in study, i.e. inner-compartment model and outer-compartment model. The former has abnormal pressure and is the antigenic source seal pool-forming mechanism, whereas the latter has normal pressure and is of the allochthonous source opening pool-formation mechanism. (6)The study shows that the four sandbodies of Gaoqing, Fanjia, Jinjia and Zhenglizhuang sand are all very benefit for pool-formation, among which the Fanjia sandbody is the best favourable one and is likely to form lithological reservoir and fault-lithological reservoir. But the main step of exploration in Gaoqing, Zhenglizhuang sandbodies should be finding out the fault block, reversed roof and stratum-lithological oil reservoir. (7)Established a set of guidelines and techniques for the research and exploration in the large scale of sandbodies. Proposing that the various traps related to reversed fault and basin-ward fault should be found in step slopes and gentle slopes respectively, and the lithological oil reservoir should mainly be found in the sandstone updip pinch out. It is also suggested that Fanjia sandbody is most favourable to form the lithological and fault-lithological and the Gaoqing, Zhenglizhuang and Jinjia sandbodies have the potential of forming fault block, reversed roof and stratum-lithological oil reservoir. (8) Interpretation and prediction the spatial distribution of main sandbodies based on various geophysical methods suggestion that Fanxi, Gao28 south and Gao27 east have better exploration potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Halfgraben-like depressions have multiple layers of subtle traps, multiple coverings of oil-bearing series and multiple types of reservoirs. But these reservoirs have features of strong concealment and are difficult to explore. For this reason, many scholars contribute efforts to study the pool-forming mechanism for this kind of basins, and establish the basis for reservoir exploration and development. However, further study is needed. This paper takes HuiMin depression as an example to study the pool-forming model for the gentle slope belts of fault-depression lake basins. Applying multi-discipline theory, methods and technologies including sedimentary geology, structural geology, log geology, seismic geology, rock mechanics and fluid mechanics, and furthermore applying the dynamo-static data of oil reservoir and computer means in maximum limitation, this paper, qualitatively and quantitatively studies the depositional system, structural framework, structural evolution, structural lithofacies and tectonic stress field, as well as fluid potential field, sealing and opening properties of controlling-oil faults and reservoir prediction, finally presents a pool-forming model, and develops a series of methods and technologies suited to the reservoir prediction of the gentle slope belt. The results obtained in this paper richen the pool-forming theory of a complex oil-gas accumulative area in the gentle slope belt of a continental fault-depression basin. The research work begins with the study of geometric shape of fracture system, then the structural form, activity stages and time-space juxtaposition of faults with different level and different quality are investigated. On the basis of study of the burial history, subsidence history and structural evolution history, this paper synthesizes the studied results of deposition system, analyses the structural lithofacies of the gentle slope belt in the HuiMing Depression and its controlling roles to oil reservoir in the different structural lithofacies belts in time-space, and presents their evolution patterns. The study of structural stress field and fluid potential field indicates that the stress field has a great change from the Dong Ying stages to nowadays. One marked point among them is that the Dong Ying double peak- shaped nose structures usually were the favorable directional area for oil and gas migration, while the QuDi horst became favorable directional area since the GuanTao stage. Based on the active regular of fractures and the information of crude oil saturation pressure, this paper firstly demonstrates that the pool-forming stages of the LingNan field were prior to the stages of the QuDi field, whici provides new eyereach and thinking for hydrocarbon exploration in the gentle slope belt. The BeiQiao-RenFeng buried hill belt is a high value area with the maximum stress values from beginning to end, thus it is a favorable directional area for oil and gas migration. The opening and sealing properties of fractures are studied. The results obtained demonstrate their difference in the hydrocarbon pool formation. The seal abilities relate not only with the quality, direction and scale of normal stress, with the interface between the rocks of two sides of a fault and with the shale smear factor (SSF), but they relate also with the juxtaposition of fault motion stage and hydrocarbon migration. In the HuiMin gentle slope belt, the fault seal has difference both in different stages, and in different location and depth in the same stage. The seal extent also displays much difference. Therefore, the fault seal has time-space difference. On the basis of study of fault seal history, together with the obtained achievement of structural stress field and fluid potential field, it is discovered that for the pool-forming process of oil and gas in the studied area the fault seal of nowadays is better than that of the Ed and Ng stages, it plays an important role to determine the oil column height and hydrocarbon preservation. However, the fault seal of the Ed and Ng stages has an important influence for the distribution state of oil and gas. Because the influential parameters are complicated and undefined, we adopt SSF in the research work. It well reflects synthetic effect of each parameter which influences fault seal. On the basis of the above studies, three systems of hydrocarbon migration and accumulation, as well as a pool-forming model are established for the gentle slope belt of the HuiMin depression, which can be applied for the prediction of regular patterns of oil-gas migration. Under guidance of the pool-forming geological model for the HuiMin slope belt, and taking seismic facies technology, log constraint evolution technology, pattern recognition of multiple parameter reservoir and discrimination technology of oil-bearing ability, this paper develops a set of methods and technologies suited to oil reservoir prediction of the gentle slope belt. Good economic benefit has been obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper based on the example of mountain front tectonic belt of Tuha basin - a typical basin in west China, using geological, logging and seismic data, combining the two methods-comprehensive analysis of geological-geophysical data and numerical simulation together, studies the types of tectonic lithofacies and the mechanism of oil/gas accumulation in mountain front tectonic belt, and predicts favorable exploration areas. The tectonic lithofacies in periphery belt of compressional basin is systematically studied for the first time. The distribution and systematically analyzed with geological, logging and seismic data; the bury history of formations in the mountain front are restored with the back-stripping technique; the tectonic depression history of the mountain front is studied according to Airy Balanced Model; the tectonic evolution history is restored with the balanced section technique; according to the space composition of tectonic units and sedimentary systems of different geological time, the tectonic facies belt of the middle and lower Jurassic in the piedmont is divided into 12 types, and the controls of each type's tectonic lithofacies belt on the conditions of oil/gas generation, reservation and sealing are analyzed in depth. 3D numerical simulation and analysis is applied to the tectonic stress field in the hydrocarbon reservoir-forming-period for the first time. Because of the complex evolution of mountain front of Tuha basin, 3D numerical simulation of tectonic stress field in the hydrocarbon reservoir-forming-period helps to study the magnitude of the maximum principal stress, the minimum principal stress and the shear stress, the range and distribution of the principal stress, and controls of the upwards factors on the oil/gas migration and accumulation. Through the study on the oil-controlling fault's evolution, sealing mechanism and sealing history, the coupling of two effects of the fault-passage and sealing screen for oil/gas migration can be defined. Using the basic principle of petroleum system analysis, the paper systematically studies the hydrocarbon reservoir-forming mechanism and the time-space matching of the factors that affect the formation of reservoir, such as the space matching of active oil/gas matching of the active period of fault, the migration period of oil/gas and the formation period of trap. Through comprehensive analysis, the favorable exploration targets are selected in selected in the mountain front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiyang depression is one of the most important petroleum production basins in China. The petroleum pools, found easier, have been densely explored and developed. At present, the subtle traps are becoming the main exploring aims. A lot of Tertiary sand-conglomerate body petroleum pools, as one of the important subtle pools, have been discovered recently. It is necessary and urgent to study deeply the developing characteristics and petroleum pool distribution of Tertiary sand-conglomerate bodies in Jiyang Depression. The present dissertation has concluded the main developing characteristics of the Tertiary sand-conglomerate bodies in Jiyang Depression, and studied the sand-conglomerate bodies in Chengnan Fault Zone in detail. Depending on the synthesized studies of geology, geophysics and logging data, the following conclusions have been arrived at. Four criterion layers in Member 3 of Shahejie Formation, according to the depositional cycle analyses, have been established for the subdivision of different layers of sand-conglomerate bodies and the correlation of different sand-conglomerate bodies. It indicated that the alluvial delta, delta-fan, alluvial fan, shallow water fan , deep water turbidite , fan-front turbidite are the six kinds of sand-conglomerate bodies, which have been distinguished in Jiyang Depression with the study of genetic types, characteristics and distribution of sand-conglomerate bodies. The shallow water fan, steep slope deep water turbidite and fan-front turbidite were the main types of sand-conglomerate bodies developed in Chengnan steep slope. Their identification and distribution have been described in detail. The development and distribution of sand-conglomerate bodies were resulted by fault depressing, palco-climate change and channel or trough on the uplift. The fault depressing is the most important-factor to the episodic developing of sand-conglomerate bodies. An episodic developing genetic mode has been established by the contrast analyses between episodic fault depressing and climate change cycles. The hydrocarbon accumulation in the sand-conglomerate bodies in the steep slope was correlated with fan types, depositional phases, fault depressing and diagenesis. Sand-conglomerate wedge out (include up-oblique and onlap), lithological wedge out, mud screen (for anticline), fault plugging (by mud opposite sand, mud daubing) are the 5 possible mechanisms of oil accumulation. Lithological pool, stratigraphic pool and tectonic pool and lithologic-tectonic complex pool, and 9 subtypes of petroleum pools have been detected. It is easy for different pools to be combined as a complex reservoir, which was distributed along the syn-depositional fault slopes. The sand-conglomerate bodies in deep sag were usually evaluated as pore zone for hydrocarbon accumulation before. In fact, they are potential. Because of fan-front turbidite sands were especially developed in these zones, the sands have a close connection with the oil mud, and lithological pools can be expected to find in these zones. Chengnan fault slope was main channel of oil migration, and mud screen is the principle key for the oil accumulation in the sand-conglomerate bodies. If there was no mud between the sand-conglomerate bodies or on the top of sand-conglomerate bodies, the sand-conglomerate bodies would connect each other and there would be no dense material to hold up the oil migration along the slope. As the sand-conglomerate bodies could not been taken as a screen, the mud screen is the key for developing pool in this slope. According to this principle, about 6 potential traps, such as C915 block, C913 block, C916 block, south of Y109 well block, Y104 block and Y153 block, were selected for exploration and development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development petroleum geology has made people from studying and studying and predicting in statically and respectively the pool-forming conditions of an area such as oil source bed, reservoir, overlying formation, migration, trap and preservation, etc. to regarding these conditions as well as roles of generation, reservation and accumulation as an integrated dynamic evolution development system to do study .Meanwhile apply various simulating means to try to predict from quantitative angle. Undoubtedly, the solution of these questions will accumulate exploration process, cut down exploration cost and obtain remarkable economic and social benefits. This paper which take sedimentology ,structural geology and petroleum geology as guides and take petroleum system theory as nucleus and carry out study thinking of beginning with static factor and integration of point and face as well as regarding dynamic state factor as factor and apply study methods of integration of geology, Lab research and numerical modeling proceed integrated dissect and systematic analysis to GuNan-SanHeCun depression. Also apply methods of integration of sequence stratigraphy, biostratigraphy, petrostratigraphy and seismic data to found the time-contour stratigraphic framework and reveal time-space distribution of depositional system and meantime clarify oil-source bed, reservoir and overlying distribution regular patterns. Also use basin analysis means to study precisely the depositional history, packed sequences and evolution. Meanwhile analyze systematically and totally the fracture sequence and fault quality and fault feature, study the structural form, activity JiCi and time-space juxtaposion as well as roles of fault in migration and accumulation of oil and gas of different rank and different quality fault. Simultaneously, utilize seismic, log, analysis testing data and reservoir geology theory to do systematic study and prediction to GuNan-SanHeCun reservoir, study the reservoir types macroscopic distribution and major controlling factors, reservoir rock, filler and porosity structural features as well as distribution of reservoir physical property in 3D space and do comprehensive study and prediction to major controlling and influential factors of reservoir. Furthermore, develop deepingly organic geochemistry comprehensive study, emphasis on two overlaps of oil source rock (ESI, ES3) organic geochemistry features, including types, maturity and spatial variations of organic matter to predict their source potential .Also apply biological marks to proceed oil-to-source correlation ,thereby establish bases for distribution of petroleum system. This study recover the oil generation history of oil source rocks, evaluate source and hydrocarbon discharge potential ,infer pool-forming stages and point out the accumulation direction as well as discover the forming relations of mature oil-source rock and oil reservoir and develop research to study dynamic features of petroleum system. Meanwhile use systematic view, integrate every feature and role of pool forming and the evolution history and pool-forming history, thereby lead people from static conditions such as oil source bed, reservoir, overlying formation, migration, trap and preservation to dynamically analyzing pool-forming process. Also divide GuNan-SanHeCun depression into two second petroleum system, firstly propose to divide second petroleum system according to fluid tress, structural axis and larger faults of cutting depression, and divide lower part of petroleum system into five secondary systems. Meanwhile establish layer analysis and quantitative prediction model of petroleum model, and do quantitative prediction to secondary petroleum system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jurassic is an important hydrocarbon-bearing formation in Junggar Basin. Analyzing in strata sequence stratigraphy and hydrocarbon formation has both theoretical and practical values. First of all, strata sequence stratigraphy of continental facies is a new development and supplement in the theory of stratigraphic geology. Stratum of continental facies, unlike sea facies, has rich sup-plements, rapid facies changes, and was influenced slightly by sea level changes. The structural background and sedimentary environment of the basin in west China are greatly different from those of the basins in east China. So it is important to build the patterns of strata sequence stratigraphy in west China basins. Secondly, it is also of significance to find out all kinds of traps, for the dominant types are structural ones so far. After 50 years exploration, the stratigraphic or litholigic traps have become the main concern. This desertation is mainly focused on establishing the isochronal strtaum frame for Junggar Basin to show the evolvement characters of the basin sediment system and the regionalstuctrue background. By analyzing the conditions and patterns of the regional oil and gas bearing formations with typical cross-sections, we have established the patterns of sedimentary conditions for different reserviors. By authur's study, several fruitful results have been obtained in the following: Strata sequence frame and evolvement characteristics of Jurassic: By studing strata sequence, Jurassic has been divided into 2 second rank strata sequences and 3 third rank strata sequences based on the interface unconformities. Only 2 fourth rank strata sequences were grouped in BaDaoWan group. Also different seismic facies and sediment units have been recognized with the establishment of the of sediment system model. The oil-gas system characteristics in Jurassic: We conclude that hydrocar bon resources have the best oil potential. Potential of coal, carbonaceous and dark mudstone were reduced in turn. In this thesis we have made the evaluation of three hydrocarbon sources and the distribution oil-gas resource, and studied the potentials of hydrocarbon and evolvement for each kind of micro-component of the two main resource rocks. Prediction of paleo-temperature: In Junggar basin the evolvement of paleo-ground temperature can be divided into three stages. From Carboniferous to early Permian grads of ancient ground temperature was 8-5 ℃/100m, 5-3 ℃/100m from later period of Permian to end Trias, 3-2 ℃/100m from Jurassic to early Tertiary. Patterns of Jurassic hydrocarbon-bearing reserviors: There were two kinds of hydrocarbon source of Permian and Jurassic. They form different hydrocarbon - bearing systems. Six fundamental hydrocarbon - bearing trap modeS have been established. Directions for later exploration: There were two kinds of regional belts in Jurassic, One is structural belt caused by Yanshan and Ximalaya process, and the other was the stratum one caused by paleostructural rises.