880 resultados para HONG-KONG
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
We address the problem of separating a speech signal into its excitation and vocal-tract filter components, which falls within the framework of blind deconvolution. Typically, the excitation in case of voiced speech is assumed to be sparse and the vocal-tract filter stable. We develop an alternating l(p) - l(2) projections algorithm (ALPA) to perform deconvolution taking into account these constraints. The algorithm is iterative, and alternates between two solution spaces. The initialization is based on the standard linear prediction decomposition of a speech signal into an autoregressive filter and prediction residue. In every iteration, a sparse excitation is estimated by optimizing an l(p)-norm-based cost and the vocal-tract filter is derived as a solution to a standard least-squares minimization problem. We validate the algorithm on voiced segments of natural speech signals and show applications to epoch estimation. We also present comparisons with state-of-the-art techniques and show that ALPA gives a sparser impulse-like excitation, where the impulses directly denote the epochs or instants of significant excitation.
Resumo:
In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.
Resumo:
The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.
Resumo:
Local polynomial approximation of data is an approach towards signal denoising. Savitzky-Golay (SG) filters are finite-impulse-response kernels, which convolve with the data to result in polynomial approximation for a chosen set of filter parameters. In the case of noise following Gaussian statistics, minimization of mean-squared error (MSE) between noisy signal and its polynomial approximation is optimum in the maximum-likelihood (ML) sense but the MSE criterion is not optimal for non-Gaussian noise conditions. In this paper, we robustify the SG filter for applications involving noise following a heavy-tailed distribution. The optimal filtering criterion is achieved by l(1) norm minimization of error through iteratively reweighted least-squares (IRLS) technique. It is interesting to note that at any stage of the iteration, we solve a weighted SG filter by minimizing l(2) norm but the process converges to l(1) minimized output. The results show consistent improvement over the standard SG filter performance.
Resumo:
In this paper, an implicit scheme is presented for a meshless compressible Euler solver based on the Least Square Kinetic Upwind Method (LSKUM). The Jameson and Yoon's split flux Jacobians formulation is very popular in finite volume methodology, which leads to a scalar diagonal dominant matrix for an efficient implicit procedure (Jameson & Yoon, 1987). However, this approach leads to a block diagonal matrix when applied to the LSKUM meshless method. The above split flux Jacobian formulation, along with a matrix-free approach, has been adopted to obtain a diagonally dominant, robust and cheap implicit time integration scheme. The efficacy of the scheme is demonstrated by computing 2D flow past a NACA 0012 airfoil under subsonic, transonic and supersonic flow conditions. The results obtained are compared with available experiments and other reliable computational fluid dynamics (CFD) results. The present implicit formulation shows good convergence acceleration over the RK4 explicit procedure. Further, the accuracy and robustness of the scheme in 3D is demonstrated by computing the flow past an ONERA M6 wing and a clipped delta wing with aileron deflection. The computed results show good agreement with wind tunnel experiments and other CFD computations.
Restoration of images and 3D data to higher resolution by deconvolution with sparsity regularization