923 resultados para HIV-1-INFECTED PATIENTS
Resumo:
The third variable region (V3 loop) of gp120, the HIV-1 surface envelope glycoprotein, plays a key role in HIV-1 infection and pathogenesis. Recently, we reported that a synthetic multibranched peptide (SPC3) containing eight V3-loop consensus motifs (GPGRAF) inhibited HIV-1 infection in both CD4+ and CD4- susceptible cells. In the present study, we investigated the mechanisms of action of SPC3 in these cell types--i.e., CD4+ lymphocytes and CD4- epithelial cells expressing galactosylceramide (GalCer), an alternative receptor for HIV-1 gp120. We found that SPC3 was a potent inhibitor of HIV-1 infection in CD4+ lymphocytes when added 1 h after initial exposure of the cells to HIV-1, whereas it had no inhibitory effect when present only before and/or during the incubation with HIV-1. These data suggested that SPC3 did not inhibit the binding of HIV-1 to CD4+ lymphocytes but interfered with a post-binding step necessary for virus entry. In agreement with this hypothesis, SPC3 treatment after HIV-1 exposure dramatically reduced the number of infected cells without altering gp120-CD4 interaction or viral gene expression. In contrast, SPC3 blocked HIV-1 entry into CD4-/GalCer+ human colon epithelial cells when present in competition with HIV-1 but had no effect when added after infection. Accordingly, SPC3 was found to inhibit the binding of gp120 to the GalCer receptor. Thus, the data suggest that SPC3 affects HIV-1 infection by two distinct mechanisms: (i) prevention of GalCer-mediated HIV-1 attachment to the surface of CD4-/GalCer+ cells and (ii) post-binding inhibition of HIV-1 entry into CD4+ lymphocytes.
Resumo:
INTRODUÇÃO: A infecção por HIV-1 é um grave problema de saúde pública causando elevada taxa de morbidade e mortalidade. Entretanto, alguns indivíduos são considerados resistentes à infecção por HIV-1, mesmo após repetidas exposições ao vírus. Vários fatores imunológicos e genéticos podem estar associados a resistência à infecção, como ativação de componentes da imunidade inata e também devido ao baixo perfil de ativação das células T. É possível que nos indivíduos expostos e não infectados por HIV-1 (ENI) ocorra uma importante atuação das células T secretoras de IL-17 e IL-22, e também as células T reguladoras, pois são necessárias para a manutenção e homeostase das mucosas associadas ao intestino (GALT). OBJETIVO: Avaliar o fenótipo e a função de células TCD4+ e TCD8+ em casais sorodiscordante ao HIV-1, compostos por indivíduos ENI e os parceiros infectados por HIV-1. MÉTODOS: Os casais sorodiscordantes ao HIV-1, consistiam de 23 indivíduos expostos não-infectados (ENI), 14 mulheres e 9 homens, com mediana de 41 anos e 21 parceiros infectados por HIV-1 (HIV), 20 homens e 1 mulher com mediana de 41 anos. Os controles saudáveis foram 24 indivíduos (14 mulheres e 10 homens) com mediana de 37 anos. Os casais sorodiscordantes foram compostos por 16 heterossexuais e 7 homossexuais, com tempo de relacionamento de 13 anos. As frequências de células Th17, Th22 e Tc22, as células T polifuncionais foram analisadas em células mononucleares (CMNs) do sangue periférico, estimulados com peptídeos da região Gag do HIV-1 e da enterotoxina B do Staphylococcus aureus (SEB), a frequência de células T reguladoras, o perfil fenotípico de exaustão/diferenciação e a expressão da integrina alfa4?7 e CCR9 em células T, foram realizados por citometria de fluxo. RESULTADOS: No grupo HIV, as células T CD4+ e CD8+ do sangue periférico mostrou maior frequência de CD95 e PD-1 e baixa expressão de CD127 comparado ao grupo ENI e controle. A frequência de células Th17 em CMNs aumentou nos grupos ENI e HIV-1 na condição sem estímulo, contudo, após estímulo com os peptídeos da região p24 da Gag do HIV-1 induziu resposta somente no grupo HIV-1. O grupo ENI mostrou resposta antígeno-especifica somente para IL-22. Além disto, avaliando as células Tc22 e Th22, foi verificado aumento da resposta aos peptídeos da Gag e também ao SEB, nos grupos HIV e ENI. A presença de células T polifuncionais antígeno-especificas, secretoras de 5-4 citocinas, foi detectada apenas em células T CD38+ no grupo HIV, enquanto os indivíduos ENI mostraram resposta polifuncional por células T CD38- somente ao estímulo policlonal por SEB. Uma diminuição do número absoluto de células T reguladoras (CD4+CD25+CD127low/-Foxp3+) foi detectada no grupo HIV comparado ao ENI e controle, com maior expressão de moléculas HLA-DR e CD95. Além disto, foi detectado diminuição na frequência de células TCD8+ ?4?7+ no grupo ENI e de células TCD4+ alfa4beta7+ nos grupos ENI e HIV. Houve uma correlação positiva entre as células Tc22 e Th22 com as células TCD8+ e TCD4+ que expressam alfa4beta7, no grupo ENI e HIV-1. CONCLUSÃO: Os indivíduos ENI são capazes de desenvolver resposta antígeno-específicas relacionadas com a IL-22, que possui importante função na imunidade de mucosas. Além disto, mostram presença de células T polifuncionais com baixo perfil de ativação a estímulo policlonal. Os dados evidenciam que os indivíduos ENI, mostram indução de células Tc22, aumento de expressão de moléculas de migração para o intestino e equilíbrio entre as células efetoras e Treg, que em conjunto, devem exercer importante papel para a resistência à infecção por HIV-1
Resumo:
Targeting hard-to-reach/marginalized populations is essential for preventing HIV-transmission. A unique opportunity to identify such populations in Switzerland is provided by a database of all genotypic-resistance-tests from Switzerland, including both sequences from the Swiss HIV Cohort Study (SHCS) and non-cohort sequences. A phylogenetic tree was built using 11,127 SHCS and 2,875 Swiss non-SHCS sequences. Demographics were imputed for non-SHCS patients using a phylogenetic proximity approach. Factors associated with non-cohort outbreaks were determined using logistic regression. Non-B subtype (univariable odds-ratio (OR): 1.9; 95% confidence interval (CI): 1.8-2.1), female gender (OR: 1.6; 95% CI: 1.4-1.7), black ethnicity (OR: 1.9; 95% CI: 1.7-2.1) and heterosexual transmission group (OR:1.8; 95% CI: 1.6-2.0), were all associated with underrepresentation in the SHCS. We found 344 purely non-SHCS transmission clusters, however, these outbreaks were small (median 2, maximum 7 patients) with a strong overlap with the SHCS'. 65% of non-SHCS sequences were part of clusters composed of >= 50% SHCS sequences. Our data suggests that marginalized-populations are underrepresented in the SHCS. However, the limited size of outbreaks among non-SHCS patients in-care implies that no major HIV outbreak in Switzerland was missed by the SHCS surveillance. This study demonstrates the potential of sequence data to assess and extend the scope of infectious-disease surveillance.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background The HIV virus is known for its ability to exploit numerous genetic and evolutionary mechanisms to ensure its proliferation, among them, high replication, mutation and recombination rates. Sliding MinPD, a recently introduced computational method [1], was used to investigate the patterns of evolution of serially-sampled HIV-1 sequence data from eight patients with a special focus on the emergence of X4 strains. Unlike other phylogenetic methods, Sliding MinPD combines distance-based inference with a nonparametric bootstrap procedure and automated recombination detection to reconstruct the evolutionary history of longitudinal sequence data. We present serial evolutionary networks as a longitudinal representation of the mutational pathways of a viral population in a within-host environment. The longitudinal representation of the evolutionary networks was complemented with charts of clinical markers to facilitate correlation analysis between pertinent clinical information and the evolutionary relationships. Results Analysis based on the predicted networks suggests the following:: significantly stronger recombination signals (p = 0.003) for the inferred ancestors of the X4 strains, recombination events between different lineages and recombination events between putative reservoir virus and those from a later population, an early star-like topology observed for four of the patients who died of AIDS. A significantly higher number of recombinants were predicted at sampling points that corresponded to peaks in the viral load levels (p = 0.0042). Conclusion Our results indicate that serial evolutionary networks of HIV sequences enable systematic statistical analysis of the implicit relations embedded in the topology of the structure and can greatly facilitate identification of patterns of evolution that can lead to specific hypotheses and new insights. The conclusions of applying our method to empirical HIV data support the conventional wisdom of the new generation HIV treatments, that in order to keep the virus in check, viral loads need to be suppressed to almost undetectable levels.
Resumo:
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Resumo:
Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.
Resumo:
Given the emerging epidemic of renal disease in HIV+ patients and the fact that HIV DNA and RNA persist in the kidneys of HIV+ patients despite therapy, it is necessary to understand the role of direct HIV-1 infection of the kidney. HIV-associated kidney disease pathogenesis is attributed in large part to viral proteins. Expression of Vpr in renal tubule epithelial cells (RTECs) induces G2 arrest, apoptosis and polyploidy. The ability of a subset of cells to overcome the G2/M block and progress to polyploidy is not well understood. Polyploidy frequently associates with a bypass of cell death and disease pathogenesis. Given the ability of the kidney to serve as a unique compartment for HIV-1 infection, and the observed occurrence of polyploid cells in HIV+ renal cells, it is critical to understand the mechanisms and consequences of Vpr-induced polyploidy.
Here I determined effects of HIV-1 Vpr expression in renal cells using highly efficient transduction with VSV.G pseudotyped lentiviral vectors expressing Vpr in the HK2 human tubule epithelial cell line. Using FACS, fluorescence microscopy, and live cell imaging I show that G2 escape immediately precedes a critical junction between two distinct outcomes in Vpr+ RTECs: mitotic cell death and polyploidy. Vpr+ cells that evade aberrant mitosis and become polyploid have a substantially higher survival rate than those that undergo complete mitosis, and this survival correlates with enrichment for polyploidy in cell culture over time. Further, I identify a novel role for ATM kinase in promoting G2 arrest escape and polyploidy in this context. In summary, my work identifies ATM-dependent override of Vpr-mediated G2/M arrest as a critical determinant of cell fate Vpr+ RTECs. Further, our work highlights how a poorly understood HIV mechanism, ploidy increase, may offer insight into key processes of reservoir establishment and disease pathogenesis in HIV+ kidneys.
Resumo:
The mechanisms responsible for increased cardiovascular risk associated with HIV-1 infection are incompletely defined. Using flow cytometry, in the present study, we examined activation phenotypes of monocyte subpopulations in patients with HIV-1 infection or acute coronary syndrome to find common cellular profiles. Nonclassic (CD14(+)CD16(++)) and intermediate (CD14(++)CD16(+)) monocytes are proportionally increased and express high levels of tissue factor and CD62P in HIV-1 infection. These proportions are related to viremia, T-cell activation, and plasma levels of IL-6. In vitro exposure of whole blood samples from uninfected control donors to lipopolysaccharide increased surface tissue factor expression on all monocyte subsets, but exposure to HIV-1 resulted in activation only of nonclassic monocytes. Remarkably, the profile of monocyte activation in uncontrolled HIV-1 disease mirrors that of acute coronary syndrome in uninfected persons. Therefore, drivers of immune activation and inflammation in HIV-1 disease may alter monocyte subpopulations and activation phenotype, contributing to a pro-atherothrombotic state that may drive cardiovascular risk in HIV-1 infection.
Resumo:
Nuclear import of HIV-1 preintegration complexes (PICs) allows the virus to infect nondividing cells. Integrase (IN), the PIC-associated viral enzyme responsible for the integration of the viral genome into the host cell DNA, displays karyophilic properties and has been proposed to participate to the nuclear import of the PIC. Styrylquinolines (SQs) have been shown to block viral replication at nontoxic concentrations and to inhibit IN 3'-processing activity in vitro by competing with the DNA substrate binding. However, several lines of evidence suggested that SQs could have a postentry, preintegrative antiviral effect in infected cells. To gain new insights on the mechanism of their antiviral activity, SQs were assayed for their ability to affect nuclear import of HIV-1 IN and compared with the effect of a specific strand transfer inhibitor. Using an in vitro transport assay, we have previously shown that IN import is a saturable mechanism, thus showing that a limiting cellular factor is involved in this process. We now demonstrate that SQs specifically and efficiently inhibit in vitro nuclear import of IN without affecting other import pathways, whereas a specific strand transfer inhibitor does not affect IN import. These data suggest that SQs not only inhibit IN-DNA interaction but would also inhibit the interaction between IN and the cellular factor required for its nuclear import.
Resumo:
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a P-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 Angstrom N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba(67,95)]HIVPR and [Lys(7),Ile(33),Aba(67,95)]- HIVPR used in this work were shown to have very similar crystal structures.
Resumo:
Helicobacter pylori infection is very prevalent in Brazil, infecting almost 65% of the population. The aim of this study was to evaluate the presence of this bacterium in the oral cavity of patients with functional dyspepsia (epigastric pain syndrome), establish the main sites of infection in the mouth, and assess the frequency of cagA and vacA genotypes of oral H. pylori. All 43 outpatients with epigastric pain syndrome, who entered the study, were submitted to upper gastrointestinal endoscopy to rule out organic diseases. Helicobacter pylori infection in the stomach was confirmed by a rapid urease test and urea breath tests. Samples of saliva, the tongue dorsum and supragingival dental plaque were collected from the oral cavity of each subject and subgingival dental plaque samples were collected from the patients with periodontitis; H. pylori infection was verified by polymerase chain reaction using primers that amplify the DNA sequence of a species-specific antigen present in all H. pylori strains; primers that amplify a region of urease gene, and primers for cagA and vacA (m1, m2, s1a, s1b, s2) genotyping. Thirty patients harbored H. pylori in the stomach, but it was not possible to detect H. pylori in any oral samples using P1/P2 and Urease A/B. The genotype cagA was also negative in all samples and vacA genotype could not be characterized (s-m-). The oral cavity may not be a reservoir for H. pylori in patients with epigastric pain syndrome, the bacterium being detected exclusively in the stomach.
Resumo:
Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and Sao Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model. Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7-408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log(10) copies/mL; 95% CI, .90-3.25 log(10) copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001). Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.