979 resultados para HIGHLY DISPERSED ELECTRODES
Resumo:
Band alignment of resistive random access memory (RRAM) switching material Ta2O5 and different metal electrode materials was examined using high-resolution X-ray photoelectron spectroscopy. Schottky and hole barrier heights at the interface between electrode and Ta2O 5 were obtained, where the electrodes consist of materials with low to high work function (Φ m, v a c from 4.06 to 5.93 eV). Effective metal work functions were extracted to study the Fermi level pinning effect and to discuss the dominant conduction mechanism. An accurate band alignment between electrodes and Ta2O5 is obtained and can be used for RRAM electrode engineering and conduction mechanism study. © 2013 American Institute of Physics.
Resumo:
Recent studies show that carbon nanotubes (CNTs) can be used as temperature sensors, and offer great opportunities towards extreme miniaturization, high sensitivity, low power consumption, and rapid response. Previous CNT based temperature sensors are fabricated by either dielectrophoresis or piece-wise alignment of read-out electronics around randomly dispersed CNTs. We introduce a new deterministic and parallel microsensor fabrication method based on the self-assembly of CNTs into three-dimensional microbridges. We fabricated prototype microbridge sensors on patterned electrodes, and found their sensitivity to be better than -0.1 %/K at temperatures between 300K and 420K. This performance is comparable to previously published CNT based temperature sensors. Importantly, however, our research shows how unique sensor architectures can be made by self-assembly, which can be achieved using batch processing rather than piecewise assembly. ©2010 IEEE.
Resumo:
A solution processed aluminum-doped zinc oxide (AZO)/multi-walled carbon nanotube (MWCNT) nanocomposite thin film has been developed offering simultaneously high optical transparency and low electrical resistivity, with a conductivity figure of merit (σDC/σopt) of ~75-better than PEDOT:PSS and many graphene derivatives. The reduction in sheet resistance of thin films of pristine MWCNTs is attributed to an increase in the conduction pathways within the sol-gel derived AZO matrix and reduced inter-MWCNT contact resistance. Films have been extensively characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffractometry (XRD), photoluminescence (PL), and ultraviolet-visible (UV-vis) spectroscopy. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © OSA 2012.
On-chip switching of a silicon nitride micro-ring resonator based on digital microfluidics platform.
Resumo:
We demonstrate the switching of a silicon nitride micro ring resonator (MRR) by using digital microfluidics (DMF). Our platform allows driving micro-droplets on-chip, providing control over the effective refractive index at the vicinity of the resonator and thus facilitating the manipulation of the transmission spectrum of the MRR. The device is fabricated using a process that is compatible with high-throughput silicon fabrication techniques with buried highly doped silicon electrodes. This platform can be extended towards controlling arrays of micro optical devices using minute amounts of liquid droplets. Such an integration of DMF and optical resonators on chip can be used in variety of applications, ranging from biosensing and kinetics to tunable filtering on chip.
Resumo:
Among the variety of applications for biosensors one of the exciting frontiers is to utilize those devices as post-synaptic sensing elements in chemical coupling between neurons and solid-state systems. The first necessary step to attain this challenge is to realize highly efficient detector for neurotransmitter acetylcholine (ACh). Herein, we demonstrate that the combination of floating gate configuration of ion-sensitive field effect transistor (ISFET) together with diluted covalent anchoring of enzyme acetylcholinesterase (AChE) onto device sensing area reveals a remarkable improvement of a four orders of magnitude in dose response to ACh. This high range sensitivity in addition to the benefits of peculiar microelectronic design show, that the presented hybrid provides a competent platform for assembly of artificial chemical synapse junction. Furthermore, our system exhibits clear response to eserine, a competitive inhibitor of AChE, and therefore it can be implemented as an effective sensor of pharmacological reagents, organophosphates, and nerve gases as well. © 2007 Materials Research Society.
Resumo:
Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.
Resumo:
In this paper the acoustic characterization of a layer of carbon nanotubes (CNT) deposited on AlN solidly mounted resonators is described. The structure of the CNT layer is analyzed by scanning electron microscopy and Raman spectroscopy. The electrical sheet resistance is derived from 4 point probe measurements and from the fitting of the electrical response of the resonators. Values of sheet resistance around 100 Ω/□ are measured. The longitudinal acoustic velocity is derived from the fitting of the electrical response of the resonators using Mason's model, by adjusting the overtones produced in the CNT layer. A mean value of 62000 m·s-1 is obtained, although some devices show values around 90000 m·s -1, close to the theoretical value of 100000 m·s-1. Some results on the deposition of CNT layers on metallic top electrodes and their influence on the performance of the resonator are also presented. © 2013 IEEE.
Resumo:
The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids.