969 resultados para HIGHER DIMENSIONS
Resumo:
We report on the formation of a stable Body-Centered Heptahedral (BCH) crystalline nanobridge structure of diameter ~ 1nm under high strain rate tensile loading to a <100> Cu nanowire. Extensive Molecular Dynamics (MD) simulations are performed. Six different cross-sectional dimensions of Cu nanowires are analyzed, i.e. 0.3615 x 0.3615 nm2, 0.723 x 0.723 nm2, 1.0845 x 1.0845 nm2, 1.446 x 1.446 nm2, 1.8075 x 1.8075 nm2, and 2.169 x 2.169 nm2. The strain rates used in the present simulations are 1 x 109 s-1, 1 x 108 s-1, and 1 x 107 s-1. We have shown that the length of the nanobridge can be characterized by larger plastic strain. A large plastic deformation is an indication that the structure is highly stable. The BCH nanobridge structure also shows enhanced mechanical properties such as higher fracture toughness and higher failure strain. The effect of temperature, strain rate and size of the nanowire on the formation of BCH structure is also explained in details. We also show that the initial orientation of the nanowires play an important role on the formation of BCH crystalline structure. Results indicate that proper tailoring of temperature and strain rate during processing or in the device can lead to very long BCH nanobridge structure of Cu with enhanced mechanical properties, which may find potential application for nano-scale electronic circuits.
Resumo:
Monodisperse iron oxide nanocrystals with spherical and cubic morphologies, of comparable dimensions, have been prepared by the thermal decomposition of FeOOH. The lattice spacings of both forms agree with that of magnetite, Fe(3)O(4). The two, however, exhibit very different blocking temperatures. Nanocrystals of cubic morphology are superparamagnetic above 190 K while the spherical nanocrystals at a lower temperature, 142 K. The higher blocking temperatures in particles of cubic morphology are shown to be a consequence of exchange bias fields. We show that in the present iron oxide nanocrystals the exchange bias fields originate from the presence of trace amounts of wustite, FeO. A Reitveld refinement analysis of the X-ray diffraction patterns shows that nanocrystals of cubic morphology have a higher FeO content. The higher FeO content is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature for nanocrystals with cubic morphology.
Resumo:
In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.
Resumo:
A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.
Resumo:
In this paper, we consider the problem of designing minimum mean squared error (MMSE) filterbank precoder and equalizer for multiple input multiple output (MIMO) frequency selective channels. We derive the conditions to be satisfied by the optimal precoder-equalizer pair, and provide an iterative algorithm for solving them. The optimal design is very general, in that it is not constrained by channel dimensions, channel order, channel rank, or the input constellation. We also discuss some pertinent difierences between the filterbank approach and the space-time approach to the design of optimal precoder and equalizer. Simulation results demonstrate that the proposed design performs better than the space-time systems while supporting a higher data rate.
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.
Resumo:
Epitaxial-Bain-Path and Uniaxial-Bain-Path studies reveal that a B2-CuZr nanowire with Zr atoms on the surface is energetically more stable compared to a B2-CuZr nanowire with Cu atoms on the surface. Nanowires of cross-sectional dimensions in the range of similar to 20-50 are considered. Such stability is also correlated with the initial state of stress in the nanowires. It is also demonstrated here that a more stable structure, i.e., B2-CuZr nanowire with Zr atoms at surface shows improved yield strength compared to B2-CuZr nanowire with Cu atoms at surface site, over range of temperature under both the tensile and the compressive loadings. Nearly 18% increase in the average yield strength under tensile loading and nearly 26% increase in the averaged yield strength under compressive loading are observed for nanowires with various cross-sectional dimensions and temperatures. It is also observed that the B2-CuZr nanowire with Cu atom at the surface site shows a decrease in failure/plastic strain with an increase in temperature. On the other hand, B2-CuZr nanowires with Zr at the surface site shows an improvement in failure/plastic strain, specially at higher temperature as compared to the B2-CuZr nanowires which are having Cu atoms at the surface site. Finally, a possible design methodology for an energetically stable nano-structure with improved thermo-mechanical properties via manipulating the surface atom configuration is proposed.
Resumo:
An exact classical theory of the motion of a point dipole in a meson field is given which takes into account the effects of the reaction of the emitted meson field. The meson field is characterized by a constant $\chi =\mu /\hslash $ of the dimensions of a reciprocal length, $\mu $ being the meson mass, and as $\chi \rightarrow $ 0 the theory of this paper goes over continuously into the theory of the preceding paper for the motion of a spinning particle in a Maxwell field. The mass of the particle and the spin angular momentum are arbitrary mechanical constants. The field contributes a small finite addition to the mass, and a negative moment of inertia about an axis perpendicular to the spin axis. A cross-section (formula (88 a)) is given for the scattering of transversely polarized neutral mesons by the rotation of the spin of the neutron or proton which should be valid up to energies of 10$^{9}$ eV. For low energies E it agrees completely with the old quantum cross-section, having a dependence on energy proportional to p$^{4}$/E$^{2}$ (p being the meson momentum). At higher energies it deviates completely from the quantum cross-section, which it supersedes by taking into account the effects of radiation reaction on the rotation of the spin. The cross-section is a maximum at E $\sim $ 3$\cdot $5$\mu $, its value at this point being 3 $\times $ 10$^{-26}$ cm.$^{2}$, after which it decreases rapidly, becoming proportional to E$^{-2}$ at high energies. Thus the quantum theory of the interaction of neutrons with mesons goes wrong for E $\gtrsim $ 3$\mu $. The scattering of longitudinally polarized mesons is due to the translational but not the rotational motion of the dipole and is at least twenty thousand times smaller. With the assumption previously made by the present author that the heavy partilesc may exist in states of any integral charge, and in particular that protons of charge 2e and - e may occur in nature, the above results can be applied to charged mesons. Thus transversely polarised mesons should undergo a very big scattering and consequent absorption at energies near 3$\cdot $5$\mu $. Hence the energy spectrum of transversely polarized mesons should fall off rapidly for energies below about 3$\mu $. Scattering plays a relatively unimportant part in the absorption of longitudinally polarized mesons, and they are therefore much more penetrating. The theory does not lead to Heisenberg explosions and multiple processes.
Resumo:
We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.
Resumo:
The search for molecular markers which predict response to chemotherapy is an important aspect of current neuro-oncology research. MGMT promoter methylation is the only proved marker of glioblastoma. The purpose of this study was to assess the effect of topoisomerase expression on glioblastoma survival and study the mechanisms involved. The transcript levels of all isoforms of the topoisomerase family in all grades of diffuse astrocytoma were assessed. A prospective study of patients with glioblastoma treated by a uniform treatment procedure was performed with the objective of correlating outcome with gene expression. The ability of TOP2A enzyme to relax the super coiled plasmid DNA in the presence of temozolomide was evaluated to assess its effect on TOP2A. The temozolomide cyctotoxicity of TOP2A-silenced U251 cells was assessed. The transcript levels of TOP2A, TOP2B, and TOP3A are upregulated significantly in GBM in comparison with lower grades of astrocytoma and normal brain samples. mRNA levels of TOP2A correlated significantly with survival of the patients. Higher TOP2A transcript levels in GBM patients predicted better prognosis (P = 0.043; HR = 0.889). Interestingly, we noted that temozolomide inhibited TOP2A activity in in-vitro enzyme assays. We also noted that siRNA knock down of TOP2A rendered a glioma cell line resistant to temozolomide chemotherapy. We demonstrated for the first time that temozolomide is also a TOP2A inhibitor and established that TOP2A transcript levels determine the chemosensitivity of glioblastoma to temozolomide therapy. Very high levels of TOP2A are a good prognostic indicator in GBM patients receiving temozolomide chemotherapy.
Resumo:
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Resumo:
Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant for the Euclidean non-rotating BTZ black hole in terms of the quasinormal modes which agrees with that obtained by integrating the heat kernel found by group theoretic methods.
Resumo:
This paper deals with the role of the higher-order evanescent modes generated at the area discontinuities in the acoustic attenuation characteristics of an elliptical end-chamber muffler with an end-offset inlet and end-centered outlet. It has been observed that with an increase in length, the muffler undergoes a transition from being acoustically short to acoustically long. Short end chambers and long end chambers are characterized by transverse plane waves and axial plane waves, respectively, in the low-frequency range. The nondimensional frequency limit k(0)(D-1/2) or k(0)R(0) as well as the chamber length to inlet/outlet pipe diameter ratio, i.e., L/d(0), up to which the muffler behaves like a short chamber and the corresponding limit beyond which the muffler is acoustically long are determined. The limits between which neither the transverse plane-wave model nor the conventional axial plane-wave model gives a satisfactory prediction have also been determined, the region being called the intermediate range. The end-correction expression for this muffler configuration in the acoustically long limit has been obtained using 3-D FEA carried on commercial software, covering most of the dimension range used in the design exercise. Development of a method of combining the transverse plane wave model with the axial plane wave model using the impedance Z] matrix is another noteworthy contribution of this work.
Resumo:
Lepton mass hierarchies and lepton flavour violation are revisited in the framework of Randall-Sundrum models. Models with Dirac-type as well as Majorana-type neutrinos are considered. The five-dimensional c-parameters are fit to the charged lepton and neutrino masses and mixings using chi(2) minimization. Leptonic flavour violation is shown to be large in these cases. Schemes of minimal flavour violation are considered for the cases of an effective LLHH operator and Dirac neutrinos and are shown to significantly reduce the limits from lepton flavour violation.