943 resultados para HIGH-TEMPERATURE FERROMAGNETIC SPIN SYSTEMS
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
We present comprehensive studies of dc magnetization, ac susceptibility, and magnetotransport of two sets of La0.85Sr0.15CoO3 samples, one exhibits phase separation and the other exhibits spin glass behavior. Our study reveals that the phase separation in La0.85Sr0.15CoO3 is neither inherent nor ubiquitous; rather, it is a consequence of preparation condition. It is realized that the low temperature annealed sample exhibits phase separation while the high temperature annealed one shows the characteristic of spin glass behavior. This study shows that the most probable magnetic state of La0.85Sr0.15CoO3 is spin glass.
Resumo:
Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30–35 °C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures.
Resumo:
ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Electrical and magnetic properties of several oxide systems of K2NiF4 structure have been compared to those of the corresponding perovskites. Members of the La1−xSr1+xCoO4 system are all semiconductors with a high activation energy for conduction unlike La1−xSrxCoO3 (x ≥ 0.3) which is metallic; the latter oxides are ferromagnetic. La0.5Sr1.5CoO4 shows a magnetization of 0.5 μB at 0 K (compared to 1.5 μB of La0.5Sr0.5CoO3), but the high-temperature susceptibilities of the two systems are comparable. In SrO · (La0.5Sr0.5MnO3)n, both magnetization and electrical conductivity increase with the increase in n approaching the value of the perovskite La0.5Sr0.5MnO3. LaSrMn0.5Ni0.5(Co0.5)O4 shows no evidence of long-range ferromagnetic ordering unlike the perovskite LaMn0.5Ni0.5(Co0.5)O3; high-temperature susceptibility behavior of these two insulating systems is, however, similar. LaSr1−xBaxNiO4 exhibits high electrical resistivity with the resistivity increasing proportionately with the magnetic susceptibility (note that LaNiO3 is a Pauli-paramagnetic metal). High-temperature susceptibility of LaSrNiO4 and LaNiO3 are comparable. Susceptibility measurements show no evidence for long-range ordering in LaSrFe1−xNixO4 unlike in LaFe1−xNixO3 (x ≤ 0.35) and the electrical resistivity of the former is considerably higher. Electrical resistivity of Sr2RuO4 is more than an order of magnitude higher than that of SrRuO3. Some generalizations of the properties of two- and three-dimensional oxide systems have emerged from these experimental observations.
Resumo:
Recent experimental investigations of phase equilibria and thermodynamic properties of the systems M-Pb-O, where M = Ca, Sr or Ba, indicate a regular increase in thermodynamic stability of ternary oxides, MPbO3 and M2PbO4, with increasing basicity of the oxide of the alkaline-earth metal. Number of stable interoxide compounds at 1100 K in the systems M-Pb-O (M = Mg, Ca, Sr, Ba) increases in unit increments from Mg to Ba. In this paper, experimentally determined standard Gibbs energies of formation of M2PbO4 (M = Ca, Sr, Ba) and MPbO3 (M = Sr, Ba) from their component binary monoxides and oxygen gas are combined with an estimated value for CaPbO3 to delineate systematic trends in thermodynamic stability of the ternary oxides. The trends are interpreted using concepts of tolerance factor and acid-base interactions. All the ternary oxides in these systems contain lead in the tetravalent state. The small Pb4+ ions polarize the surrounding oxygen ions and cause the formation of oxyanions which are acidic in character. Hence, the higher oxidation state of lead is stabilized in the presence of basic oxides of alkaline-earth group. A schematic subsolidus temperature-composition phase diagram is presented for the system BaO-PbO-O-2 to illustrate the change in oxidation states in binary and ternary oxides with temperature.
Resumo:
The signatures of the coexistence of para and ferromagnetic phases for the Fe3+ charge state of iron have been identified in the low temperature electron spin resonance (ESR) spectra in undoped CdZnTe (Zn similar to 4%) crystals and independently verified by superconducting quantum interference device (SQUID) and AC susceptibility measurements. In the paramagnetic phase the inverse of AC susceptibility follows the Curie-Weiss law. In the ferromagnetic phase the thermal evolution of magnetization follows the well-known Bloch T-3/2 law. This is further supported by the appearance of hysteresis in the SQUID measurements at 2 K below T-c which is expected to lie in between 2 and 2.5 K. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
Two distinct ferromagnetic phases are present in LaMn0.5Co0.5O3 for which the spin-only magnetic moment calculated from the high temperature dc susceptibility is found to be unusually high. Such a high moment can only be accounted for by assigning the valence state of the cations to Mn2+-Co4+. This is unrealistic as the earlier report based on X-ray absorption spectroscopy (XAS) has suggested the valence state to be mainly Mn4+-Co2+ with traces of Co3+. Also from our studies using XAS, it is found that the valence state is mainly Mn4+-Co2+. In addition, no notable difference is observed in the minor Co3+ present in both phases. Our results based on X-ray magnetic circular dichroism studies (XMCD) reveal the presence of ``distinct'' high orbital moment associated with Co2+ for both phases. Thus it is found that the distinctness of the orbital moment also plays a vital role in determining the magnetic moment and T-c of both phases of LaMn0.5Co0.5O3. By considering the orbital moment obtained from XMCD, the anomaly in the paramagnetic susceptibility is resolved and thus we are able to assign the valence state to Mn4+-Co2+ configuration. The difference in the magnitude of orbital moment in both phases is believed to be due to the crystal field effects.
Resumo:
We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.
Resumo:
We explore the salient features of the `Kitaev ladder', a two-legged ladder version of the spin-1/2 Kitaev model on a honeycomb lattice, by mapping it to a one-dimensional fermionic p-wave superconducting system. We examine the connections between spin phases and topologically non-trivial phases of non-interacting fermionic systems, demonstrating the equivalence between the spontaneous breaking of global Z(2) symmetry in spin systems and the existence of isolated Majorana modes. In the Kitaev ladder, we investigate topological properties of the system in different sectors characterized by the presence or absence of a vortex in each plaquette of the ladder. We show that vortex patterns can yield a rich parameter space for tuning into topologically non-trivial phases. We introduce and employ a new topological invariant for explicitly determining the presence of zero energy Majorana modes at the boundaries of such phases. Finally, we discuss dynamic quenching between topologically non-trivial phases in the Kitaev ladder and, in particular, the post-quench dynamics governed by tuning through a quantum critical point.
Resumo:
Ordered double perovskite oxides of the general formula A2BB′O6 have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of the magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.
Resumo:
We present a spin model, namely, the Kitaev model augmented by a loop term and perturbed by an Ising Hamiltonian, and show that it exhibits both confinement-deconfinement transitions from spin liquid to antiferromagnetic/spin-chain/ferromagnetic phases and topological quantum phase transitions between gapped and gapless spin-liquid phases. We develop a fermionic resonating-valence-bonds (RVB) mean-field theory to chart out the phase diagram of the model and estimate the stability of its spin-liquid phases, which might be relevant for attempts to realize the model in optical lattices and other spin systems. We present an analytical mean-field theory to study the confinement-deconfinement transition for large coefficient of the loop term and show that this transition is first order within such mean-field analysis in this limit. We also conjecture that in some other regimes, the confinement-deconfinement transitions in the model, predicted to be first order within the mean-field theory, may become second order via a defect condensation mechanism. Finally, we present a general classification of the perturbations to the Kitaev model on the basis of their effect on it's spin correlation functions and derive a necessary and sufficient condition, within the regime of validity of perturbation theory, for the spin correlators to exhibit a long-ranged power-law behavior in the presence of such perturbations. Our results reproduce those of Tikhonov et al. [Phys. Rev. Lett. 106, 067203 (2011)] as a special case.
Resumo:
The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.”
Resumo:
Modulation-doped two-dimensional hole gas structures consisting of a strained germanium channel on relaxed Ge0.7Si0.3 buffer layers were grown by molecular-beam epitaxy. Sample processing was optimized to substantially reduce the contribution from the parasitic conducting layers. Very high hall mobilities of 1700 cm2/V s for holes were observed at 295 K which are the highest reported to date for any kind of p-type silicon-based heterostructures. Hall measurements were carried out from 13 to 300 K to determine the temperature dependence of the mobility and carrier concentration. The carrier concentration at room temperature was 7.9×1011 cm−2 and decreased by only 26% at 13 K, indicating very little parallel conduction. The high-temperature mobility obeys a T−α behavior with α∼2, which can be attributed to intraband optical phonon scattering.