893 resultados para Group behaviour
Resumo:
Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.
Resumo:
Awareness of the power of the mass media to communicate images of protest to global audiences and, in so doing, to capture space in global media discourses is a central feature of the transnational protest movement. A number of protest movements have formed around opposition to concepts and practices that operate beyond national borders, such as neoliberal globalization or threats to the environment. However, transnational protests also involve more geographically discreet issues such as claims to national independence or greater religious or political freedom by groups within specific national contexts. Appealing to the international community for support is a familiar strategy for communities who feel that they are being discriminated against or ignored by a national government.
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.
Resumo:
While supportive-expressive group therapy (SEGT) has been found to be effective in significantly reducing distress associated with life-threatening illness, the challenge in Australia is to develop a means of providing supportive interventions to rural women who may be isolated both by the experience of illness and by geographical location. In this study an adaptation of SEGT was provided to women with metastatic breast cancer (n =21), who attended face-to-face or by telephone conference call. Participants showed significant gains on standardised measures of well-being, including a reduction in negative affect and an increase in positive affect, over a 12-month period. A reduction in intrusive and avoidant stress symptoms was also observed over 12 months; however, this difference was not significant. These outcomes suggest that SEGT, delivered in an innovative way within a community setting, may be an effective means of moderating the adverse effects of a diagnosis of metastatic breast cancer while improving access to supportive care for rural women. These results are considered exploratory, as the study did not include a matched control group.
Resumo:
My thesis consists of a creative work plus an exegesis. This exegesis uses case study research to investigate three Brisbane-based media organisations and the role they play in encouraging social inclusion and other positive social change for specific disadvantaged and stigmatised minority groups. Bailey, Cammaerts and Carpentier’s theoretical approach to alternative media forms the basis of this research. Bailey et al. (2008, p. 156) view alternative media organisations as having four important roles, two media-centred and two society-centred, which must all be considered to best understand them: • serving their communities • acting as an alternative to mainstream media discourses • promoting and advocating democratisation in the media and through the media in society • functioning as a crossroads in civil society. The first case study, about community radio station 4RPH (Radio for the Print Handicapped), centres on promoting social inclusion for people with a print disability through access to printed materials (primarily mainstream print media) in an audio format. The station also provides important opportunities for members of this group to produce media and, to a lesser extent, provides disability-specific information and discussions. The second case study, about gay print and online magazine Queensland Pride, focuses on promoting social inclusion and combating the discrimination and repression of people who identify as lesbian, gay, bisexual or transgender. Central issues include the representation (including sexualised representation) of a subculture and niche target market, and the impact of commercialisation on this free publication. The third case study, about community radio station 98.9FM, explores the promotion of social inclusion for peoples whose identity, cultures, issues, politics and contributions are often absent or misrepresented in the mainstream media. This radio station provides “a first level of service” (Meadows & van Vuuren, 1998, p. 104) to these people, but also informs and entertains those in the majority society. The findings of this research suggest that there are two key mechanisms that help these media organisations to effect social change: first, strengthening the minority community and serving its needs, and second, fostering connections with the broader society.
Resumo:
The explanation of social inequalities in education is still a debated issue in economics. Recent empirical studies tend to downplay the potential role of credit constraint. This article tests a different potential explanation of social inequalities in education, specifically that social differences in aspiration level result in different educational choices. Having existed for a long time in the sociology of education, this explanation can be justified if aspiration levels are seen as reference points in a prospect theory framework. In order to test this explanation, this article applies the method of experimental economics to the issue of education choice and behaviour. One hundred and twenty-nine individuals participated in an experiment in which they had to perform a task over 15 stages grouped in three blocks or levels. In order to continue through the experiment, a minimum level of success was required at the end of each level. Rewards were dependent on the final level successfully reached. At the end of each level, participants could either choose to stop and take their reward or to pay a cost to continue further in order to possibly receive higher rewards. To test the impact of aspiration levels, outcomes were either presented as gains or losses relative to an initial sum. In accordance with the theoretical predictions, participants in the loss framing group choose to go further in the experiment. There was also a significant and interesting gender effect in the loss framing treatment, such that males performed better and reached higher levels.
Resumo:
We report on the use of the hydrogen bond accepting properties of neutral nitrone moieties to prepare benzylic-amide-macrocycle-containing [2]rotaxanes in yields as high as 70 %. X-Ray crystallography shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and the two nitrone groups of the thread. Dynamic 1H NMR studies of the rates of macrocycle pirouetting in nonpolar solutions indicate that amide-nitrone hydrogen bonds are particularly strong, ~1.3 and ~0.2 kcal mol-1 stronger than similar amide-ester and amide-amide interactions, respectively. In addition to polarizing the N-O bond through hydrogen bonding, the rotaxane structure affects the chemistry of the nitrone groups in two significant ways: The intercomponent hydrogen bonding activates the nitrone groups to electrochemical reduction, a one electron reduction of the rotaxane being stablized by a remarkable 400 mV (8.1 kcal mol-1) with respect to the same process in the thread; encapsulation, however, protects the same functional groups from chemical reduction with an external reagent (and slows down electron transfer to and from the electroactive groups in cyclicvoltammetry experiments). Mechanical interlocking with a hydrogen bonding molecular sheath thus provides a route to an encapsulated polarized functional group and radical anions of significant kinetic and thermodynamic stability.