957 resultados para Great Salt Lake (Utah) -- Aerial photographs


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In August 1925, University of Oxford anthropologist Beatrice Blackwood spent two days on the Blood Reserve in southern Alberta, home to the Kainai Nation. Assisted by the Indian Agent, she toured the reserve and took 33 photographs. Blackwood was investigating potential links among "race," culture, and environment, and some of her photographs were anthropometric in nature. Others, showing men working in fields or girls at residential school, portrayed a culture in transition. Upon her return to Britain, Blackwood deposited the Kainai photographs with Oxford's Pitt Rivers Museum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an observational study of the large-scale moisture transport over South America, with some analyses on its relation to subtropical rainfall. The concept of aerial rivers is proposed as a framework: it is an analogy between the main pathways of moisture flow in the atmosphere and surface rivers. Opposite to surface rivers, aerial rivers gain (lose) water through evaporation (precipitation). The magnitude of the vertically integrated moisture transport is discharge, and precipitable water is like the mass of the liquid column-multiplied by an equivalent speed it gives discharge. Trade wind flow into Amazonia, and the north/northwesterly flow to the subtropics, east of the Andes, are aerial rivers. Aerial lakes are the sections of a moisture pathway where the flow slows down and broadens, because of diffluence, and becomes deeper, with higher precipitable water. This is the case over Amazonia, downstream of the trade wind confluence. In the dry season, moisture from the aerial lake is transported northeastward, but weaker flow over southern Amazonia heads southward toward the subtropics. Southern Amazonia appears as a source of moisture to this flow. Aerial river discharge to the subtropics is comparable to that of the Amazon River. The variations of the amount of moisture coming from Amazonia have an important effect over the variability of discharge. Correlations between the flow from Amazonia and subtropical rainfall are not strong. However, some months within the set of dry seasons observed showed a strong increase (decrease) occurring together with an important increase (decrease) in subtropical rainfall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines the effects of flooding on coastal and salt marsh vegetation. I conducted a field experiment in Bellocchio Lagoon to test the effects of different inundation periods (Level 1 = 0.468 or 11.23 hours; Level 2 = 0.351 or 8.42 hours; Level 3 = 0.263 or 6.312 hours; Level 4 = 0.155 or 3.72 hours; Level 5 = 0.082 or 1.963 hours; Level 6 = 0.04 or 0.96 hours) on the growth responses and survival of the salt marsh grass Spartina maritima in summer 2011 and 2012. S. maritima grew better at intermediate inundation times (0,351 hours; 0,263 hours, 0,115 hours; 0,082 hours), while growth and survival were reduced at greater inundation periods (0,468 hours). The differences between the 2011 and 2012 experiment were mainly related to differences in the initial number of shoots (1 and 5, respectively in 2011 and 2012). In the 2011 experiment a significant lower number of plants was present in the levels 1 and 6, the rhizomes reached the max pick in level 4, weights was major in level 4, spike length reached the pick in level 3 while leaf length in level 2. In the 2012 experiment the plants in level 6 all died, the rhizomes were more present in level 3, weights was major in level 3, spike length reached the pick in level 3, as well as leaf length. I also conducted a laboratory experiment which was designed to test the effects of 5 different inundation periods (0 control, 8, 24, 48, 96 hours) on the survival of three coastal vegetation species Agrostis stolonifera, Trifolium repens and Hippopae rhamnoides in summer 2012. The same laboratory experiment was repeated in the Netherlands. In Italy, H. rhamnoides showed a great survival in the controls, a variable performance in the other treatments and a clear decrease in treatment 4. Conversely T. repens and A. stolonifera only survive in the control. In the Netherlands experiment there was a greater variability responses for each species, still at the end of the experiment survival was significantly smaller in treatment 4 (96 h of seawater inundation) for all the three species. The results suggest that increased flooding can affect negatively the survival of both saltmarsh and coastal plants, limiting root system extension and leaf growth. Flooding effect could lead to further decline and fragmentation of the saltmarshes and coastal vegetation, thereby reducing recovery (and thus resilience) of these systems once disturbed. These effects could be amplified by interactions with other co-occurring human impacts in these systems, and it is therefore necessary to identify management options that increase the resilience of these systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of forest stand dynamics in a modelling framework including Forest Vegetation Simulator (FVS) are diameter driven, thus the diameter or basal area increment model needs a special attention. This dissertation critically evaluates diameter or basal area increment models and modelling approaches in the context of the Great Lakes region of the United States and Canada. A set of related studies are presented that critically evaluate the sub-model for change in individual tree basal diameter used in the Forest Vegetation Simulator (FVS), a dominant forestry model in the Great Lakes region. Various historical implementations of the STEMS (Stand and Tree Evaluation and Modeling System) family of diameter increment models, including the current public release of the Lake States variant of FVS (LS-FVS), were tested for the 30 most common tree species using data from the Michigan Forest Inventory and Analysis (FIA) program. The results showed that current public release of the LS-FVS diameter increment model over-predicts 10-year diameter increment by 17% on average. Also the study affirms that a simple adjustment factor as a function of a single predictor, dbh (diameter at breast height) used in the past versions, provides an inadequate correction of model prediction bias. In order to re-engineer the basal diameter increment model, the historical, conceptual and philosophical differences among the individual tree increment model families and their modelling approaches were analyzed and discussed. Two underlying conceptual approaches toward diameter or basal area increment modelling have been often used: the potential-modifier (POTMOD) and composite (COMP) approaches, which are exemplified by the STEMS/TWIGS and Prognosis models, respectively. It is argued that both approaches essentially use a similar base function and neither is conceptually different from a biological perspective, even though they look different in their model forms. No matter what modelling approach is used, the base function is the foundation of an increment model. Two base functions – gamma and Box-Lucas – were identified as candidate base functions for forestry applications. The results of a comparative analysis of empirical fits showed that quality of fit is essentially similar, and both are sufficiently detailed and flexible for forestry applications. The choice of either base function in order to model diameter or basal area increment is dependent upon personal preference; however, the gamma base function may be preferred over the Box-Lucas, as it fits the periodic increment data in both a linear and nonlinear composite model form. Finally, the utility of site index as a predictor variable has been criticized, as it has been widely used in models for complex, mixed species forest stands though not well suited for this purpose. An alternative to site index in an increment model was explored, using site index and a combination of climate variables and Forest Ecosystem Classification (FEC) ecosites and data from the Province of Ontario, Canada. The results showed that a combination of climate and FEC ecosites variables can replace site index in the diameter increment model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic activities have increased phosphorus (P) loading in tributaries to the Laurentian Great Lakes resulting in eutrophication in small bays to most notably, Lake Erie. Changes to surface water quality from P loading have resulted in billions of dollars in damage and threaten the health of the world’s largest freshwater resource. To understand the factors affecting P delivery with projected increasing urban lands and biofuels expansion, two spatially explicit models were coupled. The coupled models predict that the majority of the basin will experience a significant increase in urban area P sources while the agriculture intensity and forest sources of P will decrease. Changes in P loading across the basin will be highly variable spatially. Additionally, the impacts of climate change on high precipitation events across the Great Lakes were examined. Using historical regression relationships on phosphorus concentrations, key Great Lakes tributaries were found to have future changes including decreasing total loads and increases to high-flow loading events. The urbanized Cuyahoga watersheds exhibits the most vulnerability to these climate-induced changes with increases in total loading and storm loading , while the forested Au Sable watershed exhibits greater resilience. Finally, the monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes was examined with a focus on the challenges to monitoring. Based on these interviews, the research identified three issues that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider: first, that the policy objectives driving different monitoring programs vary, which results in different patterns of sampling design and frequency; second, that these differences complicate efforts to encourage collaboration; and third, that methods of funding sampling programs vary from agency to agency, further complicating efforts to generate sufficient long-term data to improve our understanding of phosphorus into the Great Lakes. The dissertation combines these three areas of research to present the potential future impacts of P loading in the Great Lakes as anthropogenic activities, climate and monitoring changes. These manuscripts report new experimental data for future sources, loading and climate impacts on phosphorus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogeochemical processes in the coastal region, including the coastal area of the Great Lakes, are of great importance due to the complex physical, chemical and biological characteristics that differ from those on either the adjoining land or open water systems. Particle-reactive radioisotopes, both naturally occurring (210Pb, 210Po and 7Be) and man-made (137Cs), have proven to be useful tracers for these processes in many systems. However, a systematic isotope study on the northwest coast of the Keweenaw Peninsula in Lake Superior has not yet been performed. In this dissertation research, field sampling, laboratory measurements and numerical modeling were conducted to understand the biogeochemistry of the radioisotope tracers and some particulate-related coastal processes. In the first part of the dissertation, radioisotope activities of 210Po and 210Pb in a variability of samples (dissolved, suspended particle, sediment trap materials, surficial sediment) were measured. A completed picture of the distribution and disequilibrium of this pair of isotopes was drawn. The application of a simple box model utilizing these field observations reveals short isotope residence times in the water column and a significant contribution of sediment resuspension (for both particles and isotopes). The results imply a highly dynamic coastal region. In the second part of this dissertation, this conclusion is examined further. Based on intensive sediment coring, the spatial distribution of isotope inventories (mainly 210Pb, 137Cs and 7Be) in the nearshore region was determined. Isotope-based focusing factors categorized most of the sampling sites as non- or temporary depositional zones. A twodimensional steady-state box-in-series model was developed and applied to individual transects with the 210Pb inventories as model input. The modeling framework included both water column and upper sediments down to the depth of unsupported 210Pb penetration. The model was used to predict isotope residence times and cross-margin fluxes of sediments and isotopes at different locations along each transect. The time scale for sediment focusing from the nearshore to offshore regions of the transect was on the order of 10 years. The possibility of sediment longshore movement was indicated by high inventory ratios of 137Cs: 210Pb. Local deposition of fine particles, including fresh organic carbon, may explain the observed distribution of benthic organisms such as Diporeia. In the last part of this dissertation, isotope tracers, 210Pb and 210Po, were coupled into a hydrodynamic model for Lake Superior. The model was modified from an existing 2-D finite difference physical-biological model which has previously been successfully applied on Lake Superior. Using the field results from part one of this dissertation as initial conditions, the model was used to predict the isotope distribution in the water column; reasonable results were achieved. The modeling experiments demonstrated the potential for using a hydrodynamic model to study radioisotope biogeochemistry in the lake, although further refinements are necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the rela­tive rate of corrosion of iron-tin alloys containing low percentages of tin. Since in the world today, a great deal of work is being done to develop large tin deposits and new methods devised to treat these ores, it is possible that the metal will become abundant and will obtain a more important position in the metal industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake-effect snow is an important constraint on ecological and socio-economic systems near the North American Great Lakes. Little is known about the Holocene history of lake-effect snowbelts, and it is difficult to decipher how lake-effect snowfall abundance affected ecosystem development. We conducted oxygen-isotope analysis of calcite in lake-sediment cores from northern Lower Michigan to infer Holocene climatic variation and assess snowbelt development. The two lakes experience the same synoptic-scale climatic systems, but only one of them (Huffman Lake) receives a significant amount of lake-effect snow. A 177-cm difference in annual snowfall causes groundwater inflow at Huffman Lake to be 18O-depleted by 2.3‰ relative to O'Brien Lake. To assess when the lake-effect snowbelt became established, we compared calcite-δ18O profiles of the last 11,500 years from these two sites. The chronologies are based on accelerator-mass-spectrometry 14C ages of 11 and 17 terrestrial-plant samples from Huffman and O'Brien lakes, respectively. The values of δ18O are low at both sites from 11,500 to 9500 cal yr BP when the Laurentide Ice Sheet (LIS) exerted a dominant control over the regional climate and provided periodic pulses of meltwater to the Great Lakes basin. Carbonate δ18O increases by 2.6‰ at O'Brien Lake and by 1.4‰ at Huffman Lake between 9500 and 7000 cal yr BP, suggesting a regional decline in the proportion of runoff derived from winter precipitation. The Great Lakes snowbelt probably developed between 9500 and 5500 cal yr BP as inferred from the progressive 18O-depletion at Huffman Lake relative to O'Brien Lake, with the largest increase of lake-effect snow around 7000 cal yr BP. Lake-effect snow became possible at this time because of increasing contact between the Great Lakes and frigid arctic air. These changes resulted from enhanced westerly flow over the Great Lakes as the LIS collapsed, and from rapidly rising Great Lakes levels during the Nipissing Transgression. The δ18O difference between Huffman and O'Brien lakes declines after 5500 cal yr BP, probably because of a northward shift of the polar vortex that brought increasing winter precipitation to the entire region. However, δ18O remains depleted at Huffman Lake relative to O'Brien Lake because of the continued production of lake-effect snow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continental evaporation is a significant and dynamic flux within the atmospheric water budget, but few methods provide robust observational constraints on the large-scale hydroclimatological and hydroecological impacts of this ‘recycled-water' flux. We demonstrate a geospatial analysis that provides such information, using stable isotope data to map the distribution of recycled water in shallow aquifers downwind from Lake Michigan. The δ2H and δ18O values of groundwater in the study region decrease from south to north, as expected based on meridional gradients in climate and precipitation isotope ratios. In contrast, deuterium excess (d = δ2H − 8 × δ18O) values exhibit a significant zonal gradient and finer-scale spatially patterned variation. Local d maxima occur in the northwest and southwest corners of the Lower Peninsula of Michigan, where ‘lake-effect' precipitation events are abundant. We apply a published model that describes the effect of recycling from lakes on atmospheric vapor d values to estimate that up to 32% of recharge into individual aquifers may be derived from recycled Lake Michigan water. Applying the model to geostatistical surfaces representing mean d values, we estimate that between 10% and 18% of the vapor evaporated from Lake Michigan is re-precipitated within downwind areas of the Lake Michigan drainage basin. Our approach provides previously unavailable observational constraints on regional land-atmosphere water fluxes in the Great Lakes Basin and elucidates patterns in recycled-water fluxes that may influence the biogeography of the region. As new instruments and networks facilitate enhanced spatial monitoring of environmental water isotopes, similar analyses can be widely applied to calibrate and validate water cycle models and improve projections of regional hydroecological change involving the coupled lake-atmosphere-land system. Read More: http://www.esajournals.org/doi/abs/10.1890/ES12-00062.1