986 resultados para Gravity model


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high-latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotopes and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic microparticle and nanoparticle inventories of marine sediments from equatorial Atlantic sites were investigated by scanning and transmission electron microscopy to classify all present detrital and authigenic magnetic mineral species and to investigate their regional distribution, origin, transport, and preservation. This information is used to establish source-to-sink relations and to constrain environmental magnetic proxy interpretations for this area. Magnetic extracts were prepared from sediments of three supralysoclinal open ocean gravity cores located at the Ceará Rise (GeoB 1523-1; 3°49.9'N/41°37.3'W), the Mid-Atlantic Ridge (GeoB 4313-2; 4°02.8'N/33°26.3'W), and the Sierra Leone Rise (GeoB 2910-1; 4°50.7'N/21°03.2'W). Sediments from two depths corresponding to marine isotope stages 4 and 5.5 were processed. This selection represents glacial and interglacial conditions of sedimentation for the western, central, and eastern equatorial Atlantic and avoids interferences from subsurface and anoxic processes. Crystallographic, elemental, morphological, and granulometric data of more than 2000 magnetic particles were collected by scanning and transmission electron microscopy. On basis of these properties, nine particle classes could be defined: detrital magnetite, titanomagnetite (fragmental and euhedral), titanomagnetite-hemoilmentite intergrowths, silicates with magnetic inclusions, microcrystalline hematite, magnetite spherules, bacterial magnetite, goethite needles, and nanoparticle clusters. Each class can be associated with fluvial, eolian, subaeric, and submarine volcanic, biogenic, or chemogenic sources. Large-scale sedimentation patterns are delineated as well: detrital magnetite is typical of Amazon discharge, fragmental titanomagnetite is a submarine weathering product of mid-ocean ridge basalts, and titanomagnetite-hemoilmenite intergrowths are common magnetic particles in West African dust. This clear regionalization underlines that magnetic petrology is an excellent indicator of source-to-sink relations. Hematite encrustations, magnetic spherules, and nanoparticle clusters were found at all investigated sites, while bacterial magnetite and authigenic hematite were only detected at the more oxic western site. At the eastern site, surface pits and crevices were seen on the crystal faces indicating subtle early diagenetic reductive dissolution. It was observed that paleoclimatic signatures of magnetogranulometric parameters such as the ratio of anhysteretic and isothermal remanent magnetizations can be formed either by mixing of multiple sources with separate, relatively narrow grain size ranges (western site) or by variable sorting of a single source with a broad grain size distribution (eastern site). Hematite, goethite, and possibly ferrihydrite nanoparticles occur in all sediment cores studied and have either high-coercive or superparamagnetic properties depending on their partly ultrafine grain sizes. These two magnetic fractions are generally discussed as separate fractions, but we suggest that they could actually be genetically linked.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Canary Basin lies in a region of strong interaction between the atmospheric and ocean circulation systems: Trade winds drive seasonal coastal upwelling and dust storm outbreaks from the neighbouring Sahara desert are the major source of terrigenous sediment. To investigate the forcing mechanisms for dust input and wind strength in the North Canary Basin, the temporal pattern of variability of sedimentological and geochemical proxy records has been analysed in two sediment cores between latitudes 30°30'N and 31°40'N. Spectral analysis of the dust proxy records indicates that insolation changes related to eccentricity and precession are the main periods of temporal variation in the record. Si/Al and grain-size of the terrigenous fraction show an increase in glacial-interglacial transitions while Al concentration and Fe/Al ratio are both in phase with minima in the precessional index. Hence, the results obtained show that the wind strength was intensified at Terminations. At times of maxima of Northern Hemisphere seasonal insolation, when the African monsoon was enhanced, the North Canary Basin also received higher dust input. This result suggests that the moisture brought by the monsoon may have increased the availability of dust in the source region.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoscale Gravity Waves (MGWs) are large pressure perturbations that form in the presence of a stable layer at the surface either behind Mesoscale Convective Systems (MCSs) in summer or over warm frontal surfaces behind elevated convection in winter. MGWs are associated with damaging winds, moderate to heavy precipitation, and occasional heat bursts at the surface. The forcing mechanism for MGWs in this study is hypothesized to be evaporative cooling occurring behind a convective line. This evaporatively-cooled air generates a downdraft that then depresses the surface-based stable layer and causes pressure decreases, strong wind speeds and MGW genesis. Using the Weather Research and Forecast Model (WRF) version 3.0, evaporative cooling is simulated using an imposed cold thermal. Sensitivity studies examine the response of MGW structure to different thermal and shear profiles where the strength and depth of the inversion are varied, as well as the amount of wind shear. MGWs are characterized in terms of response variables, such as wind speed perturbations (U'), temperature perturbations (T'), pressure perturbations (P'), potential temperature perturbations (Θ'), and the correlation coefficient (R) between U' and P'. Regime Diagrams portray the response of MGW to the above variables in order to better understand the formation, causes, and intensity of MGWs. The results of this study indicate that shallow, weak surface layers coupled with deep, neutral layers above favor the formation of waves of elevation. Conversely, deep strong surface layers coupled with deep, neutral layers above favor the formation of waves of depression. This is also the type of atmospheric setup that tends to produce substantial surface heating at the surface.