929 resultados para Gram-positive Bacteria
Resumo:
The skin secretions of Neotropical phyllomedusine leaf frogs have proven to be a rich source of biologically-active peptides, including antimicrobials. The major families of antimicrobial peptides (AMPs) reported are the dermaseptins and phylloseptins and the minor families, the dermatoxins, phylloxins, plasticins, distinctins and the medusins. Here, we report a novel AMP of 10 amino acid residues (LRPAILVRIKamide), named balteatide, from the skin secretion of wild Peruvian purple-sided leaf frogs, Phyllomedusa baltea. Balteatide was found to exhibit a 90% sequence identity with sauvatide, a potent myotropic peptide from the skin secretion of Phyllomedusa sauvagei. However, despite both peptides exhibiting only a single amino acid difference (I/T at position 9), sauvatide is devoid of antimicrobial activity and balteatide is devoid of myotropic activity. Balteatide was found to have differential activity against the Gram-positive bacterium, Staphylococcus aureus, the Gram-negative bacterium, Escherichia coli and the yeast, Candida albicans, and unusually for phyllomedusine frog skin AMPs, was most potent (MIC 32 mg/L) against the yeast. Balteatide was also devoid of haemolytic activity up to concentrations of 512 mg/L. Phyllomedusine frog skin secretions thus continue to provide novel AMPs, some of which may provide templates for the rational design of new classes of anti-infective therapeutics.
Resumo:
Feleucins-BV1 and -BV2 are recently-described prototypes of a novel antimicrobial nonapeptide (AMP) family identified in the skin secretion of the bombinid toad, Bombina variegata. They are encoded on different precursors that also encode a novel bombinin. Here we describe the identification of feleucin-BO1 (FLGLLGSLLamide) which is co-encoded with a different novel bombinin, named feleucin precursor-associated bombinin (FPA-bombinin-BO), from the skin secretion of Bombina orientalis. Synthetic feleucin-BO1 displayed activity against a reference Gram-positive bacterium. Staphylococcus aureus (MIC 34 μM) but was inactive (> 250 μM) against the Gram-negative bacterium, Escherichia coli, and the yeast, Candida albicans. This pattern of activity was similar to that of the prototypes. Design and synthesis of a cationicity-enhanced analogue, feleucin-K3 (F-K3), in which the amino acid residues at positions 3 (G), 6 (G) and 7 (S) of feleucin-BO1 were substituted with Lys (K) residues, resulted in a peptide with significantly-enhanced potency and spectrum of activity. The MICs of F-K3 against the reference microorganisms were 7 μM (S. aureus), 14 μM (E. coli) and 7 μM (C. albicans). These data indicate that the skin secretions of amphibians can continue to provide novel peptide templates for the rational design of analogues with possible therapeutic utility.
Resumo:
In this study, we report the antimicrobial planktonic and biofilm kill kinetics of ultrashort cationic lipopeptides previously demonstrated by our group to have a minimum biofilm eradication concentration (MBEC) in the microgram per mL (μg/mL) range against clinically relevant biofilm-forming micro-organisms. We compare the rate of kill for the most potent of these lipopeptides, dodecanoic (lauric) acid-conjugated C12-Orn-Orn-Trp-Trp-NH2 against the tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 motif and the amphibian peptide Maximin-4 via a modification of the MBEC Assay™ for Physiology & Genetics (P&G). Improved antimicrobial activity is achieved upon N-terminal lipidation of the tetrapeptide amide. Increased antimicrobial potency was demonstrated against both planktonic and biofilm forms of Gram-positive micro-organisms. We hypothesize rapid kill to be achieved by targeting of microbial membranes. Complete kill against established 24-h Gram-positive biofilms occurred within 4 h of exposure to C12-OOWW-NH2 at MBEC values [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 15.63 μg/mL] close to the values for the planktonic minimum inhibitory concentration (MIC) [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 1.95 μg/mL]. Such rapid kill, especially against sessile biofilm forms, is indicative of a reduction in the likelihood of resistant strains developing with the potential for quicker resolution of pathogenic infection. Ultrashort antimicrobial lipopeptides have high potential as antimicrobial therapy.
Resumo:
In this study, a combination of recA-based PCR assays and 16S rDNA restriction fragment length polymorphism (RFLP) analysis was used to determine the genomovar diversity of clinical Burkholderia cepacia complex isolates. Twenty-eight isolates were prospectively collected from patients attending a large Australian adult cystic fibrosis (CF) unit, 22 isolates were referred from other Australian CF units and a further eight isolates originated from patients without CF. The 28 prospectively collected isolates were distributed amongst the following genomovars: Burkholderia cepacia genomovar I (28.6%), Burkholderia multivorans (21.4%), Burkholderia cepacia genomovar III (39.3%), Burkholderia vietnamiensis(3.6%) and Burkholderia ambifaria (7.1%). The results of this study highlight the usefulness of 16S rDNA RFLP typing for the identification of other Burkholderia spp. and non-fermenting gram-negative bacteria.
Resumo:
Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix.
Resumo:
Bacteriovorax marinus SJ is a predatory delta-proteobacterium isolated from a marine environment. The genome sequence of this strain provides an interesting contrast to that of the terrestrial predatory bacterium Bdellovibrio bacteriovorus HD100. Based on their predatory lifestyle, Bacteriovorax were originally designated as members of the genus Bdellovibrio but subsequently were re-assigned to a new genus and family based on genetic and phenotypic differences. B. marinus attaches to gram-negative bacteria, penetrates through the cell wall to form a bdelloplast, in which it replicates, as shown using microscopy. Bacteriovorax is distinct, as it shares only 30% of its gene products with its closest sequenced relatives. Remarkably, 34% of predicted genes over 500 nt in length were completely unique with no significant matches in the databases. As expected, Bacteriovorax shares several characteristic loci with the other delta-proteobacteria. A geneset shared between Bacteriovorax and Bdellovibrio that is not conserved among other delta-proteobacteria such as Myxobacteria (which destroy prey bacteria externally via lysis), or the non-predatory Desulfo-bacteria and Geobacter species was identified. These 291 gene orthologues common to both Bacteriovorax and Bdellovibrio may be the key indicators of host-interaction predatory-specific processes required for prey entry. The locus from Bdellovibrio bacteriovorus is implicated in the switch from predatory to prey/host-independent growth. Although the locus is conserved in B. marinus, the sequence has only limited similarity. The results of this study advance understanding of both the similarities and differences between Bdellovibrio and Bacteriovorax and confirm the distant relationship between the two and their separation into different families.
Resumo:
Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways.
Resumo:
Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B. bacteriovorus HD100 doses in poultry with a normal gut microbiota or predosed with a colonizing Salmonella strain. In both cases, Bdellovibrio was dosed orally along with antacids. After dosing non-Salmonella-infected birds with Bdellovibrio, we measured the health and well-being of the birds and any changes in their gut pathology and culturable microbiota, finding that although a Bdellovibrio dose at 2 days of age altered the overall diversity of the natural gut microbiota in 28-day-old birds, there were no adverse effects on their growth and well-being. Drinking water and fecal matter from the pens in which the birds were housed as groups showed no contamination by Bdellovibrio after dosing. Predatory Bdellovibrio orally administered to birds that had been predosed with a gut-colonizing Salmonella enterica serovar Enteritidis phage type 4 strain (an important zoonotic pathogen) significantly reduced Salmonella numbers in bird gut cecal contents and reduced abnormal cecal morphology, indicating reduced cecal inflammation, compared to the ceca of the untreated controls or a nonpredatory ΔpilA strain, suggesting that these effects were due to predatory action. This work is a first step to applying Bdellovibrio therapeutically for other animal, and possibly human, infections.
Resumo:
Predatory Bdellovibrio bacteriovorus bacteria are remarkable in that they attach to, penetrate and digest other Gram-negative bacteria, living and replicating within them until all resources are exhausted, when they escape the prey ghost to invade fresh prey. Remarkable remodeling of both predator and prey cell occurs during this process to allow the Bdellovibrio to exploit the intracellular niche they have worked so hard to enter, keeping the prey "bdelloplast" intact until the end of predatory growth. If one views motile non-predatory bacteria in a light microscope, one is immediately struck by how rare it is for bacteria to collide. This highlights how the cell surface of Bdellovibrio must be specialized and adapted to allow productive collisions and further to allow entry into the prey periplasm and subsequent secretion of hydrolytic enzymes to digest it. Bdellovibrio can, however, also be made to grow artificially without prey; thus, they have a large genome containing both predatory genes and genes for saprophytic heterotrophic growth. Thus, the membrane and outer surface layers are a patchwork of proteins encompassing not only those that have a sole purpose in heterotrophic growth but also many more that are specialized or employed to attach to, enter, remodel, kill and ultimately digest prey cells. There is much that is as yet not understood, but molecular genetic and post-genomic approaches to microbial physiology have enhanced the pioneering biochemical work of four decades ago in characterizing some of the key events and surface protein requirements for prey attack.
Resumo:
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).
Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.
Resumo:
The impending and increasing threat of antimicrobial resistance has led to a greater focus into developing alternative therapies as substitutes for traditional antibiotics for the treatment of multi-drug resistant infections.1 Our group has developed a library of short, cost-effective, diphenylalanine-based peptides (X1-FF-X2) which selective eradicate (viability reduced >90% in 24 hours) the most resistant biofilm forms of a range of Gram-positive and negative pathogens including: methicillin resistant and sensitive Staphyloccoccus aureus and Staphyloccoccus epidermidis; Pseudomonas aeruginosa, Proteus mirabilis and Escherichia coli. They demonstrate a reduced cell cytotoxic profile (NCTC929 murine fibroblast) and limited haemolysis.2 Our molecules have the ability respond to subtle changes in pH, associated with bacterial infection, self-assembling to form β-sheet secondary structures and supramolecular hydrogels at low concentrations (~0.5%w/v). Conjugation of variety of aromatic-based drugs at the X1 position, including non-steroidal anti-inflammatories (NSAIDs), confer further pharmacological properties to the peptide motif enhancing their therapeutic potential. In vivo studies using waxworms (Galleria mellonella) provide promising preliminary results demonstrating the low toxicity and high antimicrobial activity of these low molecular weight gelators in animal models. This work shows biofunctional peptide-based nanomaterials hold great promise for future translation to patients as antimicrobial drug delivery and biomaterial platforms.3 [1] G. Laverty, S.P. Gorman and B.F. Gilmore. Int.J.Mol.Sci. 2011, 12, 6566-6596. [2] G. Laverty, A.P. McCloskey, B.F. Gilmore, D.S. Jones, J Zhou, B Xu. Biomacromolecules. 2014, 15, 9, 3429-3439. [3] A.P. McCloskey, B.F. Gilmore and G.Laverty. Pathogens. 2014, 3, 791-821.
Resumo:
Background: Epididymal protease inhibitor (eppin) is a dual motif protein belonging to the whey acidic protein (WAP) family. Although expressed in numerous different tissues, to date, its functional characterisation is limited. It has been shown to exhibit antibacterial activity against Gram-negative bacteria (Escherichia coli) and antiprotease activity against some proteases of the serine protease family. We are interested in determining the role of eppin in innate immune defence. Objectives: This study aims to determine eppin's potential function in the innate immune response in the oral cavity by investigating the antimicrobial activity of eppin against relevant oral pathogens. Methods: Eppin was recombinantly expressed in E. coli cells and purified by immobilised metal affinity chromatography (IMAC). The antimicrobial effects of the protein were then assessed against two oral pathogens, Fusobacterium nucleatum and Candida albicans, using a double layer radial diffusion assay. Results: Eppin displayed antimicrobial activities against both oral pathogens tested and these activities were shown to be comparable to the well characterised antimicrobial peptide, LL-37. The antifungal effects of eppin were shown to be more potent than those of the human cathelicidin, LL-37. Conclusions: Eppin has been shown to possess both antibacterial and antifungal properties against oral pathogens, suggesting an important role for this protein in the innate immune response in the oral cavity. This study furthers our knowledge of the physiological role exerted by eppin and its possible role in the modulation of chronic diseases such as periodontitis and oral candidiasis.
Resumo:
Ethnopharmacological relevance: Schinus molle L. has been used in folk medicine as antibacterial, antiviral, topical antiseptic, antifungal, antioxidant, anti-inflammatory, anti-tumoural as well as antispasmodic and analgesic; however, there are few studies of pharmacological and toxicological properties of S. molle essential oils. Aim of the study: The aim of this study was to evaluate the antioxidant and antimicrobial activities of S. molle leaf and fruit essential oils, correlated with their chemical composition and evaluate their acute toxicity. Materials and methods: The chemical composition of S. molle leaf and fruit essential oils were evaluated by GC-FID and GC-MS. Antioxidant properties were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and β-carotene/linoleic acid methods. Antimicrobial properties were evaluated by the agar disc diffusion method and minimal inhibitory concentration assay. Toxicity in Artemia salina and acute toxicity with behavioural screening in mice were evaluated. Results: The dominant compounds found in leaf and fruit essential oils (EOs) were monoterpene hydrocarbons, namely -phellandrene, β-phellandrene, β-myrcene, limonene and α-pinene. EOs showed low scavenging antioxidant activity by the DPPH free radical method and a higher activity by the β-carotene/linoleic acid method. Antimicrobial activity of EOs was observed for Gram+, Gram– pathogenic bacteria and food spoilage fungi. EOs showed cytotoxicity for Artemia salina and lower toxicity in Swiss mice. Conclusions: The result showed that EOs of leaves and fruits of S. molle demonstrated antioxidant and antimicrobial properties, suggesting their potential use in food or pharmaceutical industries.
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2009
Resumo:
Tese de mestrado. Biologia (Microbiologia Aplicada). Universidade de Lisboa, Faculdade de Ciências, 2014