940 resultados para Glutathione S-transferase theta (GSTT1)
Resumo:
In both euploid Chinese hamster (Cricetulus griseus) cells and pseudodiploid Chinese hamster ovary (CHO) cells, gene assignments were accomplished by G band chromosome and isozyme analysis (32 isozymes) of interspecific somatic cell hybrids obtained after HAT selection of mouse CL 1D (TK('-)) cells which were PEG-fused with either euploid Chinese hamster cells or HPRT('-) CHO cells. Hybrids slowly segregated hamster chromosomes. Clone panels consisting of independent hybrid clones and subclones containing different combinations of Chinese hamster chromosomes and isozymes were established from each type of fusion.^ These clone panels enabled us to provisionally assign the loci for: nucleoside phosphorylase (NP), glyoxalase (GLO), glutathione reductase (GSR), adenosine kinase (ADK), esterase D (ESD), peptidases B and S (PEPB and -S) and phosphoglucomutase 2 (PGM2, human nomenclature) to chromosome 1; adenylate kinase 1 (AK1), adenosine deaminase (ADA) and inosine triosephosphatase (ITP) to chromosome 6; triosephosphate isomerase (TPI) to chromosome 8; and glucose phosphate isomerse (GPI) and peptidase D (PEPD) to chromosome 9.^ We also confirm the assignments of 6-phosphogluconate dehydrogenase (PGD), PGM1, enolase 1 (ENO1) and diptheria toxin sensitivity (DTS) to chromosome 2 as well as provisionally assign galactose-1-phosphate uridyl transferase (GALT) and AK2 to chromosome 2. Selection in either HAT or BrdU for hybrids that had retained or lost the chromosome carrying the locus for TK enabled us to assign the loci for TK, galactokinase (GALK) and acid phosphatase 1 (ACP1) to Chinese hamster chromosome 7.^ These results are discussed in relation to current theories on the basis for high frequency of drug resistant autosomal recessive mutants in CHO cells and conservation of mammalian autosomal linkage groups. ^
Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes.
Resumo:
Glutathione oxidants such as tertiary butyl hydroperoxide were shown previously to prevent microtubule assembly and cause breakdown of preassembled cytoplasmic microtubules in human polymorphonuclear leukocytes. The objectives of the present study were to determine the temporal relationship between the attachment and ingestion of phagocytic particles and the assembly of microtubules, and simultaneously to quantify the levels of reduced glutathione and products of its oxidation as potential physiological regulators of assembly. Polymorphonuclear leukocytes from human peripheral blood were induced to phagocytize opsonized zymosan at 30 degrees C. Microtubule assembly was assessed in the electron microscope by direct counts of microtubules in thin sections through centrioles. Acid extracts were assayed for reduced glutathione (GSH) and oxidized glutathione (GSSG), by the sensitive enzymatic procedure of Tietze. Washed protein pellets were assayed for free sulfhydryl groups and for mixed protein disulfides with glutathione (protein-SSG) after borohydride splitting of the disulfide bond. Resting cells have few assembled microtubules. Phagocytosis induces a cycle of rapid assembly followed by disassembly. Assembly is initiated by particle contact and is maximal by 3 min of phagocytosis. Disassembly after 5-9 min of phagocytosis is preceded by a slow rise in GSSG and coincides with a rapid rise in protein-SSG. Protein-SSG also increases under conditions in which butyl hydroperoxide inhibits the assembly of microtubules that normally follows binding of concanavalin A to leukocyte cell surface receptors. No evidence for direct involvement of GSH in the induction of assembly was obtained. The formation of protein-SSG, however, emerges as a possible regulatory mechanism for the inhibition of microtubule assembly and induction of their disassembly.
Resumo:
The cores described in this list were taken on the THETA-1 (TH1) Expedition in June to September 1956 from the R/V Theta. A total of 19 cores and dredges were recovered and are archived at Scripps for sampling and study.
Resumo:
Induced defense responses in plants usually involve biosynthesis of antimicrobial metabolites and their targeted secretion at the site of pathogen contact. Our recent study on the model plant Arabidopsis revealed a novel pathogen triggered metabolism pathway for glucosinolates, amino acid-derived thio-glucosides characteristic for crucifer plants that so far were mainly known as insect deterrents (Bednarek et al. 2009).
Resumo:
The effect of the addition of a commercial enriched glutathione inactive dry yeast oenological preparation in the volatile and sensory properties of industrially manufactured rosé Grenache wines was evaluated during their shelf-life. In addition, triangle tests were performed at different times during wine aging (among 1 and 9 months) to determine the sensory differences between wines with and without glutathione inactive dry yeast preparations. Descriptive sensory analysis with a trained panel was carried out when sensory differences in the triangle test were noticed. In addition, consumer tests were performed in order to investigate consumers’ acceptability of wines. Results revealed significant sensory differences between control and glutathione inactive dry yeast wines after 9 months of aging. At that time, glutathione inactive dry yeast wines were more intense in fruity aromas (strawberry, banana) and less intense in yeast notes than control wine. The impact of the glutathione inactive dry yeast in the aroma might be the consequence of different effects that these preparations could induce in wine composition: modification of yeast byproducts during fermentation, release of volatile compounds from inactive dry yeast, interaction of wine volatile compounds with yeast macromolecules from inactive dry yeast and a possible antioxidant effect of the glutathione released by the inactive dry yeast preparation on some specific volatile compounds.
Resumo:
Antecedentes: El potencial alergénico de las proteínas puede alterarse mediante modificaciones fisicoquímicas. El glutatión (GSH) es un agente reductor utilizado como antioxidante en productos alimentarios. Objetivo: Este estudio pretende caracterizar el plegamiento natural de las proteínas de melocotón y cuantificar la alergenicidad del alérgeno mayor del melocotón, Pru p 3, natural y reducido. Métodos: Para ello, se purificó Pru p 3 y se analizó su conformación mediante dicroismo circular (DC). Mediante el análisis con tiol fluorescente, se detectaron las proteínas reducidas en melocotones frescos. Pru p 3 reducido por GSH fue analizado mediante un ensayo in vitro de proliferación de células T e in vivo mediante prueba cutánea. Resultados: Pru p 3 reducido produjo reacciones variables en las pruebas cutáneas de los pacientes alérgicos a melocotón; sin embargo, su estabilidad a la digestión gastrointestinal fue similar a la de la forma natural. La respuesta proliferativa de las células mononucleares de los pacientes alérgicos frente a Pru p 3 reducido mostró una tendencia a ser inferior, mientras que la secreción de citocinas IFN?, IL5 e IL10 fue similar a la producida con la forma natural. La reducción alteró la unión de la IgE a Pru p 3 en un pool de sueros de pacientes alérgicos a melocotón. Conclusin: En conclusión, el glutatión es capaz de reducir Pru p 3, al menos de forma transitoria. En nuestro estudio, la reducción no afectó a la alergenicidad de Pru p 3, de forma que dicho aditivo no parece resolver el riesgo de alergia en pacientes alérgicos a melocotón. Palabras clave: GSH. Pru p 3. Alergia a melocotón. Agente reductor. Unión a IgE.
Resumo:
Methyl chloride transferase, a novel enzyme found in several fungi, marine algae, and halophytic plants, is a biological catalyst responsible for the production of atmospheric methyl chloride. A previous paper reports the purification of this methylase from Batis maritima and the isolation of a cDNA clone of the gene for this enzyme. In this paper, we describe the isolation of a genomic clone of the methylase gene and the expression of recombinant methyl chloride transferase in Escherichia coli and compare the kinetic behavior of the wild-type and recombinant enzyme. The recombinant enzyme is active and promotes the production of methyl chloride by E. coli under in vivo conditions. The kinetic data indicate that the recombinant and wild-type enzymes have similar halide (Cl−, Br−, and I−)-binding capacities. Both the recombinant and wild-type enzymes were found to function well in high NaCl concentrations. This high salt tolerance resembles the activity of halobacterial enzymes rather than halophytic plant enzymes. These findings support the hypothesis that this enzyme functions in the control and regulation of the internal concentration of chloride ions in halophytic plant cells.
Resumo:
Both reversible and irreversible inhibition of mitochondrial respiration have been reported following the generation of nitric oxide (NO) by cells. Using J774 cells, we have studied the effect of long-term exposure to NO on different enzymes of the respiratory chain. Our results show that, although NO inhibits complex IV in a way that is always reversible, prolonged exposure to NO results in a gradual and persistent inhibition of complex I that is concomitant with a reduction in the intracellular concentration of reduced glutathione. This inhibition appears to result from S-nitrosylation of critical thiols in the enzyme complex because it can be immediately reversed by exposing the cells to high intensity light or by replenishment of intracellular reduced glutathione. Furthermore, decreasing the concentration of reduced glutathione accelerates the process of persistent inhibition. Our results suggest that, although NO may regulate cell respiration physiologically by its action on complex IV, long-term exposure to NO leads to persistent inhibition of complex I and potentially to cell pathology.
Resumo:
There is an immediate need for identification of new antifungal targets in opportunistic pathogenic fungi like Candida albicans. In the past, efforts have focused on synthesis of chitin and glucan, which confer mechanical strength and rigidity upon the cell wall. This paper describes the molecular analysis of CaMNT1, a gene involved in synthesis of mannoproteins, the third major class of macromolecule found in the cell wall. CaMNT1 encodes an α-1,2-mannosyl transferase, which adds the second mannose residue in a tri-mannose oligosaccharide structure which represents O-linked mannan in C. albicans. The deduced amino acid sequence suggests that CaMnt1p is a type II membrane protein residing in a medial Golgi compartment. The absence of CaMnt1p reduced the ability of C. albicans cells to adhere to each other, to human buccal epithelial cells, and to rat vaginal epithelial cells. Both heterozygous and homozygous Camnt1 null mutants of C. albicans showed strong attenuation of virulence in guinea pig and mouse models of systemic candidosis, which, in guinea pigs, could be attributed to a decreased ability to reach and/or adhere internal organs. Therefore, correct CaMnt1p-mediated O-linked mannosylation of proteins is critical for adhesion and virulence of C. albicans.
Resumo:
Methyl chloride transferase catalyzes the synthesis of methyl chloride from S-adenosine-l-methionine and chloride ion. This enzyme has been purified 2,700-fold to homogeneity from Batis maritima, a halophytic plant that grows abundantly in salt marshes. The purification of the enzyme was accomplished by a combination of ammonium sulfate fractionation, column chromatography on Sephadex G100 and adenosine-agarose, and TSK-250 size-exclusion HPLC. The purified enzyme exhibits a single band on SDS/PAGE with a molecular mass of approximately 22.5 kDa. The molecular mass of the purified enzyme was 22,474 Da as determined by matrix-associated laser desorption ionization mass spectrometry. The methylase can function in either a monomeric or oligomeric form. A 32-aa sequence of an internal fragment of the methylase was determined (GLVPGCGGGYDVVAMANPER FMVGLDIXENAL, where X represents unknown residue) by Edman degradation, and a full-length cDNA of the enzyme was obtained by rapid amplification of cDNA ends–PCR amplification of cDNA oligonucleotides. The cDNA gene contains an ORF of 690 bp encoding an enzyme of 230 aa residues having a predicted molecular mass of 25,761 Da. The disparity between the observed and calculated molecular mass suggests that the methylase undergoes posttranslational cleavage, possibly during purification. Sequence homologies suggest that the B. maritima methylase defines a new family of plant methyl transferases. A possible function for this novel methylase in halophytic plants is discussed.
Resumo:
Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a β-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the second, third, and sixth position present in the D-configuration. The gene cluster from B. subtilis ATCC6633 specifying the biosynthesis of mycosubtilin was identified. The putative operon spans 38 kb and consists of four ORFs, designated fenF, mycA, mycB, and mycC, with strong homologies to the family of peptide synthetases. Biochemical characterization showed that MycB specifically adenylates tyrosine, as expected for mycosubtilin synthetase, and insertional mutagenesis of the operon resulted in a mycosubtilin-negative phenotype. The mycosubtilin synthetase reveals features unique for peptide synthetases as well as for fatty acid synthases: (i) The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. MycA represents the first example of a natural hybrid between these enzyme families. (ii) The organization of the synthetase subunits deviates from that commonly found in peptide synthetases. On the basis of the described characteristics of the mycosubtilin synthetase, we present a model for the biosynthesis of iturin lipopeptide antibiotics. Comparison of the sequences flanking the mycosubtilin operon of B. subtilis ATCC6633, with the complete genome sequence of B. subtilis strain 168 indicates that the fengycin and mycosubtilin lipopeptide synthetase operons are exchanged between the two B. subtilis strains.
Resumo:
Terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of nucleotides at the junctions of rearranging Ig and T cell receptor gene segments, thereby generating antigen receptor diversity. Ku is a heterodimeric protein composed of 70- and 86-kDa subunits that binds DNA ends and is required for V(D)J recombination and DNA double-strand break (DSB) repair. We provide evidence for a direct interaction between TdT and Ku proteins. Studies with a baculovirus expression system show that TdT can interact specifically with each of the Ku subunits and with the heterodimer. The interaction between Ku and TdT is also observed in pre-T cells with endogenously expressed proteins. The protein–protein interaction is DNA independent and occurs at physiological salt concentrations. Deletion mutagenesis experiments reveal that the N-terminal region of TdT (131 amino acids) is essential for interaction with the Ku heterodimer. This region, although not important for TdT polymerization activity, contains a BRCA1 C-terminal domain that has been shown to mediate interactions of proteins involved in DNA repair. The induction of DSBs in Cos-7 cells transfected with a human TdT expression construct resulted in the appearance of discrete nuclear foci in which TdT and Ku colocalize. The physical association of TdT with Ku suggests a possible mechanism by which TdT is recruited to the sites of DSBs such as V(D)J recombination intermediates.
Resumo:
The availability of cysteine is thought to be the rate limiting factor for synthesis of the tripeptide glutathione (GSH), based on studies in rodents. GSH status is compromised in various disease states and by certain medications leading to increased morbidity and poor survival. To determine the possible importance of dietary cyst(e)ine availability for whole blood glutathione synthesis in humans, we developed a convenient mass spectrometric method for measurement of the isotopic enrichment of intact GSH and then applied it in a controlled metabolic study. Seven healthy male subjects received during two separate 10-day periods an l-amino acid based diet supplying an adequate amino acid intake or a sulfur amino acid (SAA) (methionine and cysteine) free mixture (SAA-free). On day 10, l-[1-13C]cysteine was given as a primed, constant i.v. infusion (3μmol⋅kg−1⋅h−1) for 6 h, and incorporation of label into whole blood GSH determined by GC/MS selected ion monitoring. The fractional synthesis rate (mean ± SD; day-1) of whole blood GSH was 0.65 ± 0.13 for the adequate diet and 0.49 ± 0.13 for the SAA-free diet (P < 0.01). Whole blood GSH was 1,142 ± 243 and 1,216 ± 162 μM for the adequate and SAA-free periods (P > 0.05), and the absolute rate of GSH synthesis was 747 ± 216 and 579 ± 135 μmol⋅liter−1⋅day−1, respectively (P < 0.05). Thus, a restricted dietary supply of SAA slows the rate of whole blood GSH synthesis and diminishes turnover, with maintenance of the GSH concentration in healthy subjects.
Resumo:
Glutathione (GSH) is a major source of reducing equivalents in mammalian cells. To examine the role of GSH synthesis in development and cell growth, we generated mice deficient in GSH by a targeted disruption of the heavy subunit of γ-glutamylcysteine synthetase (γGCS-HStm1), an essential enzyme in GSH synthesis. Embryos homozygous for γGCS-HStm1 fail to gastrulate, do not form mesoderm, develop distal apoptosis, and die before day 8.5. Lethality results from apoptotic cell death rather than reduced cell proliferation. We also isolated cell lines from homozygous mutant blastocysts in medium containing GSH. These cells also grow indefinitely in GSH-free medium supplemented with N-acetylcysteine and have undetectable levels of GSH; further, they show no changes in mitochondrial morphology as judged by electron microscopy. These data demonstrate that GSH is required for mammalian development but dispensable in cell culture and that the functions of GSH, not GSH itself, are essential for cell growth.