904 resultados para Glucose-6-phosphate dehydrogenase deficiency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: An optimal target for glucose control in ICU patients remains unclear. This prospective randomized controlled trial compared the effects on ICU mortality of intensive insulin therapy (IIT) with an intermediate glucose control. METHODS: Adult patients admitted to the 21 participating medico-surgical ICUs were randomized to group 1 (target BG 7.8-10.0 mmol/L) or to group 2 (target BG 4.4-6.1 mmol/L). RESULTS: While the required sample size was 1,750 per group, the trial was stopped early due to a high rate of unintended protocol violations. From 1,101 admissions, the outcomes of 542 patients assigned to group 1 and 536 of group 2 were analysed. The groups were well balanced. BG levels averaged in group 1 8.0 mmol/L (IQR 7.1-9.0) (median of all values) and 7.7 mmol/L (IQR 6.7-8.8) (median of morning BG) versus 6.5 mmol/L (IQR 6.0-7.2) and 6.1 mmol/L (IQR 5.5-6.8) for group 2 (p < 0.0001 for both comparisons). The percentage of patients treated with insulin averaged 66.2 and 96.3%, respectively. Proportion of time spent in target BG was similar, averaging 39.5% and 45.1% (median (IQR) 34.3 (18.5-50.0) and 39.3 (26.2-53.6)%) in the groups 1 and 2, respectively. The rate of hypoglycaemia was higher in the group 2 (8.7%) than in group 1 (2.7%, p < 0.0001). ICU mortality was similar in the two groups (15.3 vs. 17.2%). CONCLUSIONS: In this prematurely stopped and therefore underpowered study, there was a lack of clinical benefit of intensive insulin therapy (target 4.4-6.1 mmol/L), associated with an increased incidence of hypoglycaemia, as compared to a 7.8-10.0 mmol/L target. (ClinicalTrials.gov # NCT00107601, EUDRA-CT Number: 200400391440).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal development is the result of a multitude of neural migrations, which require extensive cell-cell communication. These processes are modulated by extracellular matrix components, such as heparan sulfate (HS) polysaccharides. HS is molecularly complex as a result of nonrandom modifications of the sugar moieties, including sulfations in specific positions. We report here mutations in HS 6-O-sulfotransferase 1 (HS6ST1) in families with idiopathic hypogonadotropic hypogonadism (IHH). IHH manifests as incomplete or absent puberty and infertility as a result of defects in gonadotropin-releasing hormone neuron development or function. IHH-associated HS6ST1 mutations display reduced activity in vitro and in vivo, suggesting that HS6ST1 and the complex modifications of extracellular sugars are critical for normal development in humans. Genetic experiments in Caenorhabditis elegans reveal that HS cell-specifically regulates neural branching in vivo in concert with other IHH-associated genes, including kal-1, the FGF receptor, and FGF. These findings are consistent with a model in which KAL1 can act as a modulatory coligand with FGF to activate the FGF receptor in an HS-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Atherosclerosis is a chronic inflammatory disease of major conduit arteries. Similarly, obesity and type 2 diabetes mellitus are associated with accumulation of macrophages in visceral white adipose tissue and pancreatic islets. Our goal was to characterize systemic inflammation in atherosclerosis with hypercholesterolemia, but without obesity. METHODS AND RESULTS: We compared 22-week-old apolipoprotein E knockout (ApoE(-/-)) with wild-type mice kept for 14 weeks on a high cholesterol (1.25%) diet (CD, n=8) and 8-week-old ApoE(-/-) with wild-type mice kept on a normal diet (ND, n=8). Hypercholesterolemic, atherosclerotic ApoE(-/-) mice on CD exhibited increased macrophages and T-cells in plaques and periadventitial adipose tissue that revealed elevated expression of MIP-1alpha, IL-1beta, IL-1 receptor, and IL-6. Mesenteric adipose tissue and pancreatic islets in ApoE(-/-) mice showed increased macrophages. Expression of IL-1beta was enhanced in mesenteric adipose tissue of ApoE(-/-) mice on CD. Furthermore, these mice exhibited steatohepatitis with macrophage and T-cell infiltrations as well as increased MIP-1alpha and IL-1 receptor expression. Blood glucose, insulin and total body weight did not differ between the groups. CONCLUSIONS: In hypercholesterolemic lean ApoE(-/-) mice, inflammation extends beyond atherosclerotic plaques to the periadventitial and visceral adipose tissue, liver, and pancreatic islets without affecting glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux-en-Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). OBJECTIVE: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro-intestinal hormone secretion after an oral glucose load. METHODS AND PROCEDURES: This study was a cross-sectional comparison among non-diabetic, weight-stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight- and age-matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. RESULTS: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. DISCUSSION: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP-1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the relative importance of increased lactate production as opposed to decreased utilization in hyperlactatemic patients, as well as their relation to glucose metabolism. DESIGN: Prospective observational study. SETTING: Surgical intensive care unit of a university hospital. PATIENTS: Seven patients with severe sepsis or septic shock, seven patients with cardiogenic shock, and seven healthy volunteers. INTERVENTIONS: C-labeled sodium lactate was infused at 10 micromol/kg/min and then at 20 micromol/kg/min over 120 mins each. H-labeled glucose was infused throughout. MEASUREMENTS AND MAIN RESULTS: Baseline arterial lactate was higher in septic (3.2 +/- 2.6) and cardiogenic shock patients (2.8 +/- 0.4) than in healthy volunteers (0.9 +/- 0.20 mmol/L, p < .05). Lactate clearance, computed using pharmacokinetic calculations, was similar in septic, cardiogenic shock, and controls, respectively: 10.8 +/- 5.4, 9.6 +/- 2.1, and 12.0 +/- 2.6 mL/kg/min. Endogenous lactate production was determined as the initial lactate concentration multiplied by lactate clearance. It was markedly enhanced in the patients (septic 26.2 +/- 10.5; cardiogenic shock 26.6 +/- 5.1) compared with controls (11.2 +/- 2.7 micromol/kg/min, p < .01). C-lactate oxidation (septic 54 +/- 25; cardiogenic shock 43 +/- 16; controls 65 +/- 15% of a lactate load of 10 micromol/kg/min) and transformation of C-lactate into C-glucose were not different (respectively, 15 +/- 15, 9 +/- 18, and 10 +/- 7%). Endogenous glucose production was markedly increased in the patients (septic 14.8 +/- 1.8; cardiogenic shock 15.0 +/- 1.5) compared with controls (7.2 +/- 1.1 micromol/kg/min, p < .01) and was not influenced by lactate infusion. CONCLUSIONS: In patients suffering from septic or cardiogenic shock, hyperlactatemia was mainly related to increased production, whereas lactate clearance was similar to healthy subjects. Increased lactate production was concomitant to hyperglycemia and increased glucose turnover, suggesting that the latter substantially influences lactate metabolism during critical illness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently reported on the deficiency of carbohydrate sulfotransferase 3 (CHST3; chondroitin-6-sulfotransferase) in six subjects diagnosed with recessive Larsen syndrome or humero-spinal dysostosis [Hermanns et al. (2008); Am J Hum Genet 82:1368-1374]. Since then, we have identified 17 additional families with CHST3 mutations and we report here on a series of 24 patients in 23 families. The diagnostic hypothesis prior to molecular analysis had been: Larsen syndrome (15 families), humero-spinal dysostosis (four cases), chondrodysplasia with multiple dislocations (CDMD "Megarbane type"; two cases), Desbuquois syndrome (one case), and spondylo-epiphyseal dysplasia (one case). In spite of the different diagnostic labels, the clinical features in these patients were similar and included dislocation of the knees and/or hips at birth, clubfoot, elbow joint dysplasia with subluxation and limited extension, short stature, and progressive kyphosis developing in late childhood. The most useful radiographic clues were the changes of the lumbar vertebrae. Twenty-four different CHST3 mutations were identified; 16 patients had homozygous mutations. We conclude that CHST3 deficiency presents at birth with congenital dislocations of knees, hips, and elbows, and is often diagnosed initially as Larsen syndrome, humero-spinal dysostosis, or chondrodysplasia with dislocations. The incidence of CHST3 deficiency seems to be higher than assumed so far. The clinical and radiographic pattern (joint dislocations, vertebral changes, normal carpal age, lack of facial flattening, and recessive inheritance) is characteristic and distinguishes CHST3 deficiency from other disorders with congenital dislocations such as filamin B-associated dominant Larsen syndrome and Desbuquois syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell- specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n=39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n=41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P&lt; .001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P&lt; .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD(-)CD27(+) B cells (P= .019), benign lymphoproliferation (P&lt; .001), and autoimmune complications (P= .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: GnRH deficiency is a rare genetic disorder of absent or partial pubertal development. The clinical and genetic characteristics of GnRH-deficient women have not been well-described. Objective: To determine the phenotypic and genotypic spectrum of a large series of GnRH-deficient women. Design, Setting, and Subjects: Retrospective study of 248 females with GnRH deficiency evaluated at an academic medical center between 1980 and 2010. Main Outcome Measures: Clinical presentation, baseline endogenous GnRH secretory activity, and DNA sequence variants in 11 genes associated with GnRH deficiency. Results: Eighty-eight percent had undergone pubarche, 51% had spontaneous thelarche, and 10% had 1-2 menses. Women with spontaneous thelarche were more likely to demonstrate normal pubarche (P = 0.04). In 27% of women, neuroendocrine studies demonstrated evidence of some endogenous GnRH secretory activity. Thirty-six percent (a large excess relative to controls) harbored a rare sequence variant in a gene associated with GnRH deficiency (87% heterozygous and 13% biallelic), with variants in FGFR1 (15%), GNRHR (6.6%), and PROKR2 (6.6%) being most prevalent. One woman had a biallelic variant in the X-linked gene, KAL1, and nine women had heterozygous variants. Conclusions: The clinical presentation of female GnRH deficiency varies from primary amenorrhea and absence of any secondary sexual characteristics to spontaneous breast development and occasional menses. In this cohort, rare sequence variants were present in all of the known genes associated with GnRH deficiency, including the novel identification of GnRH-deficient women with KAL1 variants. The pathogenic mechanism through which KAL1 variants disrupt female reproductive development requires further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Limited information is available on the quantitative relationship between family history and the corresponding underlying traits. We analyzed these associations for blood pressure, fasting blood glucose, and cholesterol levels. Methods: Data were obtained from 6,102 Caucasian participants (2,903 men and 3,199 women) aged 35-75 years using a population-based cross-sectional survey in Switzerland. Cardiovascular disease risk factors were measured, and the corresponding family history was self-reported using a structured questionnaire. Results: The prevalence of a positive family history (in first-degree relatives) was 39.6% for hypertension, 22.3% for diabetes, and 29.0% for hypercholesterolemia. Family history was not known for at least one family member in 41.8% of participants for hypertension, 14.4% for diabetes, and 50.2% for hypercholesterolemia. A positive family history was strongly associated with higher levels of the corresponding trait, but not with the other traits. Participants who reported not to know their family history of hypertension had a higher systolic blood pressure than participants with a negative history. Sibling histories had higher positive predictive values than parental histories. The ability to discriminate, calibrate, and reclassify was best for the family history of hypertension. Conclusions: Family history of hypertension, diabetes, and hypercholesterolemia was strongly associated with the corresponding dichotomized and continuous phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.

Relevância:

30.00% 30.00%

Publicador: