951 resultados para Generalized Abel Equation
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
This paper first points out the important fact that the rectangle formulas of continuous convolution discretization, which was widely used in conventional digital deconvolution algorithms, can result in zero-time error. Then, an improved digital deconvolution equation is suggested which is equivalent to the trapezoid formulas of continuous convolution discretization and can overcome the disadvantage of conventional equation satisfactorily. Finally, a simulation in computer is given, thus confirming the theoretical result.
Resumo:
A distributed Lagrangian moving-mesh finite element method is applied to problems involving changes of phase. The algorithm uses a distributed conservation principle to determine nodal mesh velocities, which are then used to move the nodes. The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a generalization of the original algorithm presented in Applied Numerical Mathematics, 54:450--469 (2005). Having described the details of the generalized algorithm it is validated on two test cases from the original paper and is then applied to one-phase and, for the first time, two-phase Stefan problems in one and two space dimensions, paying particular attention to the implementation of the interface boundary conditions. Results are presented to demonstrate the accuracy and the effectiveness of the method, including comparisons against analytical solutions where available.
Resumo:
A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.
Resumo:
We present the results of a systematic study of the influence of carbon surface oxidation on Dubinin–Astakhov isotherm parameters obtained from the fitting of CO2 adsorption data. Using GCMC simulations of adsorption on realistic VPC models differing in porosity and containing the most frequently occurring carbon surface functionalities (carboxyls, hydroxyls and carbonyls) and their mixtures, it is concluded that the maximum adsorption calculated from the DA model is not strongly affected by the presence of oxygen groups. Unfortunately, the same cannot be said of the remaining two parameters of this model i.e. the heterogeneity parameter (n) and the characteristic energy of adsorption (E0). Since from the latter the pore diameters of carbons are usually calculated, by inverse-type relationships, it is concluded that they are questionable for carbons containing surface oxides, especially carboxyls.
Resumo:
A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star-shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star-combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second-kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star-combined operator implies frequency-explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high-frequency case. The proof of coercivity of the star-combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains.
Resumo:
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.