903 resultados para General theory of fields and particles
Resumo:
The metal-insulator (or amorphous semiconductor) blocking contact is still not well understood. In the present paper, we discuss the non steady state characteristics of Metal-lnsulator-Metal Structure with non-intimate blocking contacts (i.e. Metal-Oxide-Insulator-Metal Structure). We consider a uniform distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present expressions for the temperature of maximum current (T-m) and a method to calculate the density of uniformly distributed impurity states. The variation of mobility with electrical field has also been considered. Finally we plot the theoretical curves under different conditions. The present results are closing into available experimental results.
Resumo:
Processing efficiency theory predicts that anxiety reduces the processing capacity of working memory and has detrimental effects on performance. When tasks place little demand on working memory, the negative effects of anxiety can be avoided by increasing effort. Although performance efficiency decreases, there is no change in performance effectiveness. When tasks impose a heavy demand on working memory, however, anxiety leads to decrements in efficiency and effectiveness. These presumptions were tested using a modified table tennis task that placed low (LWM) and high (HWM) demands on working memory. Cognitive anxiety was manipulated through a competitive ranking structure and prize money. Participants' accuracy in hitting concentric circle targets in predetermined sequences was taken as a measure of performance effectiveness, while probe reaction time (PRT), perceived mental effort (RSME), visual search data, and arm kinematics were recorded as measures of efficiency. Anxiety had a negative effect on performance effectiveness in both LWM and HWM tasks. There was an increase in frequency of gaze and in PRT and RSME values in both tasks under high vs. low anxiety conditions, implying decrements in performance efficiency. However, participants spent more time tracking the ball in the HWM task and employed a shorter tau margin when anxious. Although anxiety impaired performance effectiveness and efficiency, decrements in efficiency were more pronounced in the HWM task than in the LWM task, providing support for processing efficiency theory.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
Motivated by the recent solution of Karlin's conjecture, properties of functions in the Laguerre-Polya class are investigated. The main result of this paper establishes new moment inequalities fur a class of entire functions represented by Fourier transforms. The paper concludes with several conjectures and open problems involving the Laguerre-Polya class and the Riemann xi -function.
Resumo:
A thermostimulated sol-gel transition in a system prepared by mixing a ZrOCl(2) acidified solution to a hot H(2)SO(4) aqueous solution was studied by dynamic theological measurements and quasi-elastic light scattering. The effect of temperature and of molar ratio R(S) = [Zr]/[SO(4)] on the gelation kinetics was analyzed using the mass fractal aggregate growth model. This study shows that the linear growth of aggregates occurs at the early period of transformation, while bidimensional growth occurs at the advanced stage. The bidimensional growth can be shifted toward monodimensional growth by decreasing the aggregation rate by controlling the temperature and/or molar ratio R(S). EXAFS and Raman results gave evidence that the linear chain growth is supported by covalent sulfate bonding between primary building blocks. At the advanced stage of aggregation, the assembly of linear chains through hydrogen bonding gave rise to the growth of bidimensional particles.
Resumo:
The theory of vibronic transitions in rare earth compounds is re-examined in the light of a more reliable representation for the ligand field Hamiltonian than the crude electrostatic model. General expressions that take into account the relevant contributions from the forced electric dipole and dynamic coupling mechanisms are derived for the vibronic intensity parameters. These include additional terms, from charge and polarizability gradients, which have not been considered in previous work. Emphasis is given to the relative signs of these various contributions. Under certain approximations these expressions may be conveniently written in terms of accessible ligand field parameters. A comparison with experimental values for the compounds Cs2NaEuCl6 and LiEuF4 is made and satisfactory agreement between theory and experiment is found. A discussion is given on the sensitivity of the calculated intensities to the values of radial integrals, interconfigurational energy differences and ligand field parameters that may be used. Finally, the problem in which a vibronic and an electronic level are in resonance, or near resonance, is analyzed. Suitable expressions to describe the effects of the even-rank components of the vibronic Hamiltonian are obtained. It is found that, depending on the strength of the vibronic interaction and the resonance conditions, the admixture between these two levels may lead to intensities of nearly equal values. © 1995.
Resumo:
We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.
Resumo:
The preparation of spherical Y2O2S and Y2O2S:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated. The precursors, undoped and doped yttrium basic carbonates, are synthesized by aging a stock solution containing the respective cation chloride and urea at 82-84 °C. Y2O2S and Y2O2S:Eu were characterized in terms of their composition, crystallinity and morphology by chemical analysis, X-ray powder diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The Eu-doped oxysulfide was also characterized by atomic absorption spectrophotometry and luminescence spectroscopy. The spherical morphology of oxysulfide products and of basic carbonate precursors suggests a topotatic inter-relationship between both compounds.
Resumo:
We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay rates are verified to agree in both cases. For the sake of simplicity our calculations are performed in a two-dimensional spacetime since our conclusions are not conceptually affected by this. ©1999 The American Physical Society.
Resumo:
In this work we study the structure of electromagnetic interactions and electric charge quantization in gauge theories of electroweak interactions based on semisimple groups. We show that in the standard model of electroweak interactions the structure of electromagnetic interactions is strongly correlated to the quantization pattern of electric charges. We examine these two questions also in all possible chiral bilepton gauge models of electroweak interactions. In all, we can explain the vectorlike nature of electromagnetic interactions and electric charge quantization together demanding nonvanishing fermion masses and anomaly cancellations. ©1999 The American Physical Society.
Resumo:
Aim: The purpose of this study was to compare the effectiveness of a high-volume evacuation and a conventional intraoral suction system and aspirating tips for capturing aluminum oxide particles during use of an air-abrasion device. Methods: A phantom head was fixed at the dental chair head with secured a metallic device with 5 horizontal shafts, corresponding to operator's clockrelated working positions, and one vertical shaft to simulate the operator's nasal cavity. Petri plates were fixed to the shafts at distances of 20, 40 and 60 cm from the center of the oral cavity of the phantom head to collect the aluminum oxide particles spread over during air abrasion. The dust was aspirated with two types of suction tips used with both suction systems: a conventional saliva ejector and a saliva ejector customized by the adaptation of a 55-mm-diameter funnel. Results: The amount of particles showed that the greatest abrasive particle deposition occurred at a distance of 20 cm from the center of the oral cavity of the phantom head at 9 o'clock operatory position with the conventional saliva ejector attached to high-volume evacuation system. Conclusions: The greatest deposition of aluminum oxide particles occurred at the shortest distance between the operator and the center of the oral cavity, while using the high-volume evacuation system associated to the conventional suction tip.
Resumo:
We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of 2.7-5.4fb -1 of pp̄ collisions collected during Run II of the Fermilab Tevatron collider. Combining measurements that simultaneously determine the fractions of W bosons with longitudinal (f 0) and right-handed (f +) helicities, we find f 0=0.722±0.081[±0.062(stat)±0.052(syst)] and f +=-0.033±0.046[±0.034(stat)±0.031(syst)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f 0=0.682±0. 057[±0.035(stat)±0.046(syst)] for fixed f + and f +=-0.015±0.035[±0.018(stat)±0.030(syst)] for fixed f 0. The results are consistent with standard model expectations. © 2012 American Physical Society.
Resumo:
The objective of this paper is to show a methodology to estimate transmission line parameters. The method is applied in a single-phase transmission line using the method of least squares. In this method the longitudinal and transversal parameters of the line are obtained as a function of a set of measurements of currents and voltages (as well as their derivatives with respect to time) at the terminals of the line during the occurrence of a short-circuit phase-ground near the load. The method is based on the assumption that a transmission line can be represented by a single circuit π. The results show that the precision of the method depends on the length of the line, where it has a better performance for short lines and medium length. © 2012 IEEE.
Resumo:
This paper proposes a set of performance factors for load characterization and revenue metering. They are based on the Conservative Power Theory, and each of them relates to a specific load non-ideality (unbalance, reactivity, distortion). The performance factors are capable to characterize the load under different operating conditions, considering also the effect of non-negligible line impedances and supply voltage deterioration. © 2012 IEEE.