636 resultados para Gated
Resumo:
Yacon, Smallanthus sonchifolius, an Andean species. is a rich source of dictetíc oligofructans with low glucose content. proteins and phenolic compounds. These constituents have shown efficacy in the prevention of diet-related ehronic diseases, including gastroin-testinal disorders and diabetes |1,2|. Yacon is part of a research program at the National Center for Natural Products Research (NCNPR) and University of Mississippi Field Station to develop new alternative root crops for Mississippi while attempting to im-prove the diet of low incorne families. Yacon can be easily propa-gated by cultings. Virus and nematode infections have been re-ported on plants propagated by cuttings in Brazil. a country that hás adopted Yacon as specialty crop [3|. We have developed two culture systems. autotrophic and heterotrophic, to produce healthy plants. Herem we describe the presence of endophytic bactéria m micropropagated Yacon. In auxin free media, new roots were induced. Overa 15day period. the average root mduction per expiam was 5.45 to 8.75 under autotrophic and heterotrophic cul-tures, respectively. Root lenglh vaned between 3 and 60mrn. The presence of root hairs and lateral roots was noticed only in auto-trophic condilions. These beneficiai bactéria were identified and chemically ctiaracterized. Acknowledgement: This research work was partially supported by the USDA/ARS Cooperative Research Agreement No. 58-6408-2-009. Referentes; |1) Terada S. et ai. (2006] Yakugaku Zasshi 126(8): 665-669. (2| Valentová K. Ulri-chová j. (2003) Biomedical Papers 147: 119-130. [3| Mogor C. et ai, (2003) Acta Horticulturea 597: 311 -313.
Resumo:
This Ph.D. Thesis concerns the design and characterisation of functional electrochemical interfaces in organic electronic devices for bioelectronic applications. The Thesis is structured as follows: Chapter I – Technological context that has inspired the research, introduction to Organic Bioelectronics and literature review concerning Organic Electrochemical Transistors (OECTs) for sensing applications. Chapter II – Working principle of an all-polymeric OECT and operando microscopic characterization using scanning electrochemical techniques. Chapter III – Dopamine detection with all-polymeric OECT sensors. Development of a potentiodynamic approach to address selectivity issues in the presence of interfering species and design of a needle-type, sub-micrometric OECT sensor for spatially resolved detection of biological Dopamine concentrations. Chapter IV – Development of an OECT pH sensor. Characterization of the electrochemical transducer and functionalization of the OECT gate electrode with the sensing material. Potentiodynamic and potentiostatic operation modalities are explored and the sensing performances are assessed in both cases. The final device is realized on a flexible substrate and tested in Artificial Sweat. Chapter V – Study of two-terminal, electrochemically gated sensors inspired by the OECT configuration. Design and characterization of novel functional materials showing a potentiometric transduction of the chemical signal that can be exploited in the realization of electrochemical sensors with simplified geometry for wearable applications. Chapter VI – Conclusion.
Resumo:
This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.
Resumo:
Autism Spectrum Disorder (ASD) is a heterogeneous and highly heritable neurodevelopmental disorder with a complex genetic architecture, consisting of a combination of common low-risk and more penetrant rare variants. This PhD project aimed to explore the contribution of rare variants in ASD susceptibility through NGS approaches in a cohort of 106 ASD families including 125 ASD individuals. Firstly, I explored the contribution of inherited rare variants towards the ASD phenotype in a girl with a maternally inherited pathogenic NRXN1 deletion. Whole exome sequencing of the trio family identified an increased burden of deleterious variants in the proband that could modulate the CNV penetrance and determine the disease development. In the second part of the project, I investigated the role of rare variants emerging from whole genome sequencing in ASD aetiology. To properly manage and analyse sequencing data, a robust and efficient variant filtering and prioritization pipeline was developed, and by its application a stringent set of rare recessive-acting and ultra-rare variants was obtained. As a first follow-up, I performed a preliminary analysis on de novo variants, identifying the most likely deleterious variants and highlighting candidate genes for further analyses. In the third part of the project, considering the well-established involvement of calcium signalling in the molecular bases of ASD, I investigated the role of rare variants in voltage-gated calcium channels genes, that mainly regulate intracellular calcium concentration, and whose alterations have been correlated with enhanced ASD risk. Specifically, I functionally tested the effect of rare damaging variants identified in CACNA1H, showing that CACNA1H variation may be involved in ASD development by additively combining with other high risk variants. This project highlights the challenges in the analysis and interpretation of variants from NGS analysis in ASD, and underlines the importance of a comprehensive assessment of the genomic landscape of ASD individuals.
Resumo:
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a rare and severe neurodevelopmental disease that mostly affects girls who are heterozygous for mutations in the X-linked CDKL5 gene. The lack of CDKL5 protein expression or function leads to the appearance of numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, and severe neurodevelopmental impairment. Mouse models of CDD, Cdkl5 KO mice, exhibit several behavioral phenotypes that mimic CDD features, such as impaired learning and memory, social interaction, and motor coordination. CDD symptomatology, along with the high CDKL5 expression levels in the brain, underscores the critical role that CDKL5 plays in proper brain development and function. Nevertheless, the improvement of the clinical overview of CDD in the past few years has defined a more detailed phenotypic spectrum; this includes very common alterations in peripheral organ and tissue function, such as gastrointestinal problems, irregular breathing, hypotonia, and scoliosis, suggesting that CDKL5 deficiency compromises not only CNS function but also that of other organs/tissues. Here we report, for the first time, that a mouse model of CDD, the heterozygous Cdkl5 KO (Cdkl5 +/-) female mouse, exhibits cardiac functional and structural abnormalities. The mice also showed QTc prolongation and increased heart rate. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Moreover, the Cdkl5 +/- heart shows typical signs of heart aging, including increased fibrosis, mitochondrial dysfunctions, and increased ROS production. Overall, our study not only contributes to the understanding of the role of CDKL5 in heart structure/function but also documents a novel preclinical phenotype for future therapeutic investigation.
Resumo:
In this elaborate, a textile-based Organic Electrochemical Transistor (OECT) was first developed for the determination of uric acid in wound exudate based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which was then coupled to an electrochemically gated textile transistor consisting of a composite of iridium oxide particles and PEDOT:PSS for pH monitoring in wound exudate. In that way a sensor for multiparameter monitoring of wound health status was assembled, including the ability to differentiate between a wet-dry status of the smart bandage by implementing impedance measurements exploiting the OECT architecture. Afterwards, for both wound management as well as generic health status tracking applications, a glass-based calcium sensor was developed employing polymeric ion-selective membranes on a novel architecture inspired by the Wrighton OECT configuration, which was later converted to a Proof-of-Concept textile prototype for wearable applications. Lastly, in collaboration with the King Abdullah University of Science and Technology (KAUST, Thuwal, Saudi Arabia) under the supervision of Prof. Sahika Inal, different types of ion-selective thiophene-based monomers were used to develop ion-selective conductive polymers to detect sodium ion by different methods, involving standard potentiometry and OECT-based approaches. The textile OECTs for uric acid detection performances were optimized by investigating the geometry effect on the instrumental response and the properties of the different textile materials involved in their production, with a special focus on the final application that implies the operativity in flow conditions to simulate the wound environment. The same testing route was followed for the multiparameter sensor and the calcium sensor prototype, with a particular care towards the ion-selective membrane composition and electrode conditioning protocol optimization. The sodium-selective polymer electrosynthesis was optimized in non-aqueous environments and was characterized by means of potentiostatic and potentiodynamic techniques coupled with Quartz Crystal Microbalance and spectrophotometric measurements.