995 resultados para Gain composition
Resumo:
Selostus: Kypsennettyjen viljojen sulavuus ja ravitsemuksellinen arvo koirien ruokinnassa
Resumo:
Selostus: Alsike-, puna- ja valkoapilan vaikutus laitumen tuottoon luonnonmukaisessa tuotannossa
Resumo:
In vertebrates, early brain development takes place at the expanded anterior end of the neural tube. After closure of the anterior neuropore, the brain wall forms a physiologically sealed cavity that encloses embryonic cerebrospinal fluid (E-CSF), a complex and protein-rich fluid that is initially composed of trapped amniotic fluid. E-CSF has several crucial roles in brain anlagen development. Recently, we reported the presence of transient blood-CSF barrier located in the brain stem lateral to the ventral midline, at the mesencephalon and prosencephalon level, in chick and rat embryos by transporting proteins, water, ions and glucose in a selective manner via transcellular routes. To test the actual relevance of the control of E-CSF composition and homeostasis on early brain development by this embryonic blood-CSF barrier, we block the activity of this barrier by treating the embryos with 6-aminonicotinamide gliotoxin (6-AN). We demonstrate that 6-AN treatment in chick embryos blocks protein transport across the embryonic blood-CSF barrier, and that the disruption of the barrier properties is due to the cease transcellular caveolae transport, as detected by CAV-1 expression cease. We also show that the lack of protein transport across the embryonic blood-CSF barrier influences neuroepithelial cell survival, proliferation and neurogenesis, as monitored by neurepithelial progenitor cells survival, proliferation and neurogenesis. The blockage of embryonic blood-CSF transport also disrupts water influx to the E-CSF, as revealed by an abnormal increase in brain anlagen volume. These experiments contribute to delineate the actual extent of this blood-CSF embryonic barrier controlling E-CSF composition and homeostasis and the actual important of this control for early brain development, as well as to elucidate the mechanism by which proteins and water are transported thought transcellular routes across the neuroectoderm, reinforcing the crucial role of E-CSF for brain development.
Resumo:
This study investigated fingermark residues using Fourier transform infrared microscopy (μ- FTIR) in order to obtain fundamental information about the marks' initial composition and aging kinetics. This knowledge would be an asset for fundamental research on fingermarks, such as for dating purposes. Attenuated Total Reflection (ATR) and single-point reflection modes were tested on fresh fingermarks. ATR proved to be better suited and this mode was subsequently selected for further aging studies. Eccrine and sebaceous material was found in fresh and aged fingermarks and the spectral regions 1000-1850 cm-1 and 2700-3600 cm-1 were identified as the most informative. The impact of substrates (aluminium and glass slides) and storage conditions (storage in the light and in the dark) on fingermark aging was also studied. Chemometric analyses showed that fingermarks could be grouped according to their age regardless of the substrate when they were stored in an open box kept in an air-conditioned laboratory at around 20°C next to a window. On the contrary, when fingermarks were stored in the dark, only specimens deposited on the same substrate could be grouped by age. Thus, the substrate appeared to influence aging of fingermarks in the dark. Furthermore, PLS regression analyses were conducted in order to study the possibility of modelling fingermark aging for potential fingermark dating applications. The resulting models showed an overall precision of ±3 days and clearly demonstrated their capability to differentiate older fingermarks (20 and 34-days old) from newer ones (1, 3, 7 and 9-days old) regardless of the substrate and lighting conditions. These results are promising from a fingermark dating perspective. Further research is required to fully validate such models and assess their robustness and limitations in uncontrolled casework conditions.
Resumo:
This study was carried out to evaluate the yield, total N content in leaves and must composition of grapes from the Cabernet Sauvignon variety subjected to the application of urea and organic compost. Cabernet Sauvignon grapevines in Rosário do Sul, RS, Brazil, in 2008, 2009 and 2010 were subjected to annual application of 40 kg N ha-1 in the form of organic compost and urea, and compared to unfertilized grapevines. In the 2008/09, 2009/10 and 2010/11 crop seasons, leaves were collected for analysis of total N content. At maturation of the grapes, the yield and quality attributes of the must were evaluated. The application of N sources, especially organic compost, increased the N content in the whole leaf at full flowering. Application of organic compost and urea has little effect on grape yield and does not affect the total nutrient content in the must, nor the enological attributes.
Resumo:
The objective of this study was to characterize the chemical composition of the essential oil from the leaves of Annona emarginata (Schltdl.) H. Rainer 'terra-fria' and Annona squamosa L. The species were grown in a greenhouse for 18 months, which nutrient solution was applied weekly; the plants were then harvested and the leaves dried to extract the essential oil. The essential oil was analyzed by gas chromatography and mass spectrometry to study its chemical profiles. Eleven substances were found in the essential oil of A. emarginata, primarily (E)-caryophyllene (29.29%), (Z)-caryophyllene (16.86%), γ-muurolene (7.54%), α-pinene (13.86%), and tricyclene (10.04%). Ten substances were detected in the oil from A. squamosa, primarily (E)-caryophyllene (28.71%), (Z)-caryophyllene (14.46%), α-humulene (4.41%), camphene (18.10%), α-pinene (7.37%), β-pinene (8.71%), and longifolene (5.64%). Six substances were common to both species: (E)-caryophyllene, (Z)-caryophyllene, α-humulene, camphene, α-pinene, and β-pinene.
Resumo:
Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD.
Resumo:
The effects of the addition of heated oils to feeds (3%, w/w) and the dietary supplementation with a-tocopheryl acetate (TA; 100 mg/kg) and Zn (200 mg/kg) on rabbit tissue fatty acid (FA) composition and on the Zn, Cu, Fe and Se content in meat were assessed. Heating unrefined sunflower oil (SO) at 558C for 245 h increased its content in primary oxidation products and reduced its a-tocopherol content. However, this did not significantly affect tissue FA composition. Heating SO at 1408C for 31 h increased its content in secondary oxidation products and in some FA isomers asc9,t11-CLA and di-trans CLA. This led to increases in di-trans CLA in liver and in t9,c12-18:2 in meat. The c9,t11-CLA was the most incorporated CLA isomer in tissues. The dietary supplementation with a-TA did not affect the FA composition of plasma, liver or meat. The cooking of vacuum-packed rabbit meat at 788C for 5 min reduced significantly but slightly its polyunsaturated FA content. The dietary supplementation with Zn did not modify the content of Zn, Fe or Se in meat, but it reduced its Cu content. On the other hand, it increased the content of some FAs in meat when SO heated at 1408C for 31 h was added to feeds.
Resumo:
This paper discusses the levels of degradation of some co- and byproducts of the food chain intended for feed uses. As the first part of a research project, 'Feeding Fats Safety', financed by the sixth Framework Programme-EC, a total of 123 samples were collected from 10 European countries, corresponding to fat co- and byproducts such as animal fats, fish oils, acid oils from refining, recycled cooking oils, and other. Several composition and degradation parameters (moisture, acid value, diacylglycerols and monoacylglycerols, peroxides, secondary oxidation products, polymers of triacylglycerols, fatty acid composition, tocopherols, and tocotrienols) were evaluated. These findings led to the conclusion that some fat by- and coproducts, such as fish oils, lecithins, and acid oils, show poor, nonstandardized quality and that production processes need to be greatly improved. Conclusions are also put forward about the applicability and utility of each analytical parameter for characterization and quality control.
Resumo:
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.