968 resultados para GLUTAMATE-DEHYDROGENASE
Resumo:
Objective. Patients with rheumatoid arthritis (RA) have increased concentrations of the amino acid glutamate in synovial fluid. This study was undertaken to determine whether glutamate receptors are expressed in the synovial joint, and to determine whether activation of glutamate receptors on human synoviocytes contributes to RA disease pathology. Methods. Glutamate receptor expression was examined in tissue samples from rat knee joints and in human fibroblast-like synoviocytes (FLS). FLS from 5 RA patients and 1 normal control were used to determine whether a range of glutamate receptor antagonists influenced expression of the proinflammatory cytokine interleukin-6 (IL-6), enzymes involved in matrix degradation and cytokine processing (matrix metalloproteinase 2 [MMP-2] and MMP-9), and the inhibitors of these enzymes (tissue inhibitor of metalloproteinases 1 [TIMP-1] and TIMP-2). IL-6 concentrations were determined by enzyme-linked immunosorbent assay, MMP activity was measured by gelatin zymography, and TIMP activity was determined by reverse zymography. Fluorescence imaging of intracellular calcium concentrations in live RA FLS stimulated with specific antagonists was used to reveal functional activation of glutamate receptors that modulated IL-6 or MMP-2. Results. Ionotropic and metabotropic glutamate receptor subunit mRNA were expressed in the patella, fat pad, and meniscus of the rat knee and in human articular cartilage. Inhibition of N-methyl-D-aspartate (NMDA) receptors in RA FLS increased proMMP-2 release, whereas non-NMDA ionotropic glutamate receptor antagonists reduced IL-6 production by these cells. Stimulation with glutamate, NMDA, or kainate (KA) increased intracellular calcium concentrations in RA FLS, demonstrating functional activation of specific ionotropic glutamate receptors. Conclusion. Our findings indicate that activation of NMDA and KA glutamate receptors on human synoviocytes may contribute to joint destruction by increasing IL-6 expression. © 2007, American College of Rheumatology.
Resumo:
Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, and found a differential regulation of action potential-dependent and independent forms of release. Activation of presynaptic mGluRs depressed the amplitude of stimulus-evoked excitatory postsynaptic currents, but concurrently enhanced the frequency of spontaneous excitatory currents. Moreover, these differential effects on glutamate release were mediated by pharmacologically separable mechanisms. Application of the specific activator of adenylyl cyclase, forskolin, mimicked the effect of mGluR activation on spontaneous, but not evoked release, and inhibition of adenylyl cyclase with 9-tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) blocked mGluR-mediated enhancement of spontaneous release, but not depression of evoked release. Occlusion studies with calcium channel blockers suggested that the group III mGluRs might depress evoked release through inhibition of both N and P/Q, but not R-type calcium channels. We suggest that the concurrent depression of action potential-evoked, and enhancement of action potential-independent glutamate release operate through discrete second messenger/effector systems at excitatory entorhinal terminals in rat brain. © 2007 IBRO.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme which catalyses the conversion of glyceraldehyde-3-phosphate to 1,3 diphosphoglycerate. It is considered to be constitutively expressed in all cells, and as such the gene for GAPDH (gapd) is commonly used as a benchmark reference in expression studies. However, previous investigations have demonstrated that gapd may show altered gene expression in a number of disease states and under certain experimental conditions, suggesting that results of experiments using gapd as a control should be interpreted with caution. Furthermore, consideration must be given to the potential co-amplification of pseudogenes of gapd during RT-PCR. Here, we describe a method to avoid the amplification of contaminating pseudogenes through the design of primers that bind only to genuine gapd mRNA transcript. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG.
Resumo:
The purpose of this study was to investigate the efficacy of using monosodium glutamate (MSG) as a means to increase palatability and prospective consumption of vegetables at a congregate meal site with Cuban-American clients. Thirty to 32 subjects participated in hedonic testing each day. MSG-enhanced (2 g MSG/500 g vegetable) and non-enhanced beets, string beans, carrots and peas were evaluated for palatability, preference and prospective consumption. Results showed that MSG significantly increased both palatability and prospective consumption of string beans (ps < .05) but not of the other 3 vegetables tested. These findings provide some evidence that MSG can be used to increase the palatability of vegetables served at congregate meal sites. However, these results suggest that older adults may not find the palatability of some vegetables to be improved by MSG and that optimal flavor enhancement cannot be achieved by adding the same amount of MSG to every vegetable.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay.
Resumo:
Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.