883 resultados para GASTROINTESTINAL-TRACT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate identification of white matter structures and segmentation of fibers into tracts is important in neuroimaging and has many potential applications. Even so, it is not trivial because whole brain tractography generates hundreds of thousands of streamlines that include many false positive fibers. We developed and tested an automatic tract labeling algorithm to segment anatomically meaningful tracts from diffusion weighted images. Our multi-atlas method incorporates information from multiple hand-labeled fiber tract atlases. In validations, we showed that the method outperformed the standard ROI-based labeling using a deformable, parcellated atlas. Finally, we show a high-throughput application of the method to genetic population studies. We use the sub-voxel diffusion information from fibers in the clustered tracts based on 105-gradient HARDI scans of 86 young normal twins. The whole workflow shows promise for larger population studies in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (106–107 CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prospective design that included a survey tool, nursing care records, and telephone interview was used to determine postprocedural effects experienced by children and families following gastrointestinal endoscopy performed as a day procedure. One hundred twenty-one children attending a pediatric gastroenterology unit for endoscopy under general anesthesia participated in the study. Physical symptoms, day care/school attendance, behavioral issues, and economic factors in the 72 hours post procedure were identified. Over half the children (n = 69, 57%) experienced pain in the hospital post procedure. Pain was reported by 73 children (60%) at home on the day of the procedure, by 55 children (45%) on Day 1 post procedure, and by 37 children (31%) on Day 2 post procedure. The throat was the most common site of pain. Nausea or vomiting was experienced by 37 children (31%) at some time following their procedure but was not associated with procedure type, age, or fasting time. Over half the children (n = 53, 51%) who usually attended day care or school did not attend the day following their procedure. Twenty-four parents (40%) who would normally have worked on the day after the procedure did not attend employment. These findings have been used to improve the preprocedural information and discharge management of patients treated in a pediatric gastroenterology ambulatory setting. © The Society of Gastroenterology Nurses & Associates 2007. All Rights Reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic programming during the perinatal period as a consequence of early nutrition is an emerging area of great interest. This concept is known as the "fetal origins of adult disease" theory (1). Numerous epidemiological studies published over the past 20 years or so have suggested that small body size at birth and during infancy and, more specifically, intrauterine growth retardation are associated later in life with lowered cognitive performance and increased rates of coronary heart disease and its major biological risk factors, ie, raised blood pressure, insulin resistance, coronary artery disease, and abnormalities in lipid metabolism. The molecular mechanisms that govern this phenomenon in humans, however, are unknown and need to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safety, effectiveness and capabilities of therapeutic upper fibreoptic endoscopy in children undergoing therapeutic endoscopic procedures (n = 443) was studied. Therapy for gastrointestinal bleeding formed the major group (injection sclerotherapy for varices, n = 197 procedures; thermocoagulation for haemorrhagic gastritis, n = 1; and photocoaulation for Dieulafoy's disease, n = 1). Sclerotherapy was 97% effective in controlling acute bleeding and 84% effective in obliterating varices with no serious complications or deaths. Oesophageal dilatations for surgical, caustic, congenital and peptic strictures and achalasia (n = 193) were performed with no oesophageal perforations or deaths. Foreign bodies were retrieved (n = 34) with no failures or complications. Percutaneous endoscopic gastrostomy was performed (n = 11) with one failure, proceeding to an unsuccessful surgical gastrostomy. Miscellaneous procedures included endoscopic transpyloric tube placement (n = 5) and endoscopic diathermy of pyloric web (n = 1). Therapeutic fibreoptic endoscopy is therefore concluded to be safe and effective in children, replacing rigid oesophagoscopy and some traditional surgical approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host–pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. Methods We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14−/− mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. Results UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14−/− mice. Exacerbation of infection in Cd14−/− mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. Conclusions This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faecal Egg Count Reduction Tests (FECRTs) for macrocyclic lactone (ML) and levamisole (LEV) drenches were conducted on two dairy farms in the subtropical, summer rainfall region of eastern Australia to determine if anthelmintic failure contributed to severe gastrointestinal nematode infections observed in weaner calves. Subtropical Cooperia spp. were the dominant nematodes on both farms although significant numbers of Haemonchus placei were also present on Farm 2. On Farm 1, moxidectin pour-on (MXD) drenched at 0.5 mg kg-1 liveweight (LW) reduced the overall Cooperia burden by 82% (95% confidence limits, 37-95%) at day 7 post-drench. As worm burdens increased rapidly in younger animals in the control group (n = 4), levamisole was used as a salvage drench and these calves withdrawn from the trial on animal welfare grounds after sample collection at day 7. Levamisole (LEV) dosed at 6.8 mg kg-1 LW reduced the worm burden in these calves by 100%, 7 days after drenching. On Farm 2, MXD given at 0.5 mg kg-1 LW reduced the faecal worm egg count of cooperioids at day 8 by 96% (71-99%), ivermectin oral (IVM) at 0.2 mg kg-1 LW by 1.6% (-224 to 70%) and LEV oral at 7.1 mg kg-1 LW by 100%. For H. placei the reductions were 98% (85-99.7%) for MXD, 0.7% (-226 to 70%) for IVM and 100% for LEV. This is the first report in Australia of the failure of macrocyclic lactone treatments to control subtropical Cooperia spp. and suspected failure to control H. placei in cattle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35 year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; qRT-PCR was used to analyze selected gene responses identified in array datasets. A surprisingly small significant gene list of 172 genes was identified at 24h; this compared to 2507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2h. Bioinformatics analyses including integrative systems-level network mapping revealed multiple activated biological pathways in the GBS cystitis transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group B streptococcus (GBS), also known as Streptococcus agalactiae is a Gram-positive, β-hemolytic, chain-forming bacterium and a commensal within the genital tract flora in approximately 25% of healthy adult women (Campbell et al., 2000). The organism is a leading cause of serious infection in newborns, pregnant women, and older persons with chronic medical illness (Baker et al., Edwards&Baker, 2005). In neonates GBS infection most commonly causes pneumonia, meningitis, and sepsis. In addition to maternal cervicovaginal colonization and neonatal infection that can result from vertical transmission of GBS from mothers to their infants, the bacterium can also cause urinary tract infection (UTI). The spectrum of GBS UTI includes asymptomatic bacteriuria (ABU), cystitis, pyelonephritis, urethritis, and urosepsis (Bronsema et al., 1993, Edwards&Baker, 2005, Farley et al., 1993, Lefevre et al., 1991, McKenna et al., 2003, Munoz et al., 1992, Ulett et al., 2009). GBS ABU is particularly common among pregnant women, although those most at risk for cystitis due to GBS appear to be elderly individuals (Edwards&Baker, 2005, Falagas et al., 2006, Muller et al., 2006). In addition to acute and asymptomatic UTI other invasive diseases caused by GBS infection include skin infections, bacteraemia, pneumonia, arthritis, and endocarditis (Liston et al., 1979, Patil & Martin, 2010, Tissi et al., 1997, Trivalle et al., 1998). Thus, GBS is considered unique in terms of its ability to cause a spectrum of diseases in newborns and adult humans and its ability to colonize the genital tract of healthy women in a commensal-type manner...