986 resultados para GAS MODEL
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
Aims. Solar colors have been determined on the uvby-beta photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (T(eff), log g, [Fe/H]), and to probe zero-points of T(eff) and metallicity scales. Methods. New uvby-beta photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-beta system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different T(eff) and metallicity scales are verified and corrections are proposed. Results. Our solar colors are (b - y)(circle dot) = 0.4105 +/- 0.0015, m(1,circle dot) = 0.2122 +/- 0.0018, c(1,circle dot) = 0.3319 +/- 0.0054, and beta(circle dot) = 2.5915 +/- 0.0024. The (b - y)(circle dot) and m(1,circle dot) colors obtained from absolute spectrophotometry of the Sun agree within 3-sigma with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c(1,circle dot) and beta(circle dot) synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b - y)(circle dot) and m(1,circle dot) are in excellent agreement with our solar colors independently of the adopted zero-points, but for c(1,circle dot) and beta circle dot agreement is found only when adopting the ATLAS9 zero-points. The c(1,circle dot) color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The T(eff) calibration of Alonso and collaborators has the poorest performance (similar to 140 K off), while the relation of Casagrande and collaborators is the most accurate (within 10 K). We confirm that the Ramirez & Melendez uvby metallicity calibration, recommended by Arnadottir and collaborators to obtain [Fe/H] in F, G, and K dwarfs, needs a small (similar to 10%) zero-point correction to place the stars and the Sun on the same metallicity scale. Finally, we confirm that the c(1) index in solar analogs has a strong metallicity sensitivity.
Resumo:
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat Lambda CDM model. The comparison with Lambda CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the Lambda CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of Lambda CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the Lambda CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the Lambda CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Resumo:
Context. The distribution of chemical abundances and their variation with time are important tools for understanding the chemical evolution of galaxies. In particular, the study of chemical evolution models can improve our understanding of the basic assumptions made when modelling our Galaxy and other spirals. Aims. We test a standard chemical evolution model for spiral disks in the Local Universe and study the influence of a threshold gas density and different efficiencies in the star formation rate (SFR) law on radial gradients of abundance, gas, and SFR. The model is then applied to specific galaxies. Methods. We adopt a one-infall chemical evolution model where the Galactic disk forms inside-out by means of infall of gas, and we test different thresholds and efficiencies in the SFR. The model is scaled to the disk properties of three Local Group galaxies (the Milky Way, M31 and M33) by varying its dependence on the star formation efficiency and the timescale for the infall of gas onto the disk. Results. Using this simple model, we are able to reproduce most of the observed constraints available in the literature for the studied galaxies. The radial oxygen abundance gradients and their time evolution are studied in detail. The present day abundance gradients are more sensitive to the threshold than to other parameters, while their temporal evolutions are more dependent on the chosen SFR efficiency. A variable efficiency along the galaxy radius can reproduce the present day gas distribution in the disk of spirals with prominent arms. The steepness in the distribution of stellar surface density differs from massive to lower mass disks, owing to the different star formation histories. Conclusions. The most massive disks seem to have evolved faster (i.e., with more efficient star formation) than the less massive ones, thus suggesting a downsizing in star formation for spirals. The threshold and the efficiency of star formation play a very important role in the chemical evolution of spiral disks. For instance, an efficiency varying with radius can be used to regulate the star formation. The oxygen abundance gradient can steepen or flatten in time depending on the choice of this parameter.
Resumo:
We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Omega(m) = 1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields (Omega) over tilde = 0.28 +/- 0.01 (1 sigma), where (Omega) over tilde (m) is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large- scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Lambda CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Lambda CDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.
Resumo:
Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods. In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results. The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 10(9) orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the jet launching base, but only if violent magnetic reconnection events occur with episodic, very short-duration accretion rates which are similar to 100-1000 times larger than the typical average accretion rates expected for more evolved (T Tauri) YSOs.
Resumo:
Context. About 2/3 of the Be stars present the so-called V/R variations, a phenomenon characterized by the quasi-cyclic variation in the ratio between the violet and red emission peaks of the HI emission lines. These variations are generally explained by global oscillations in the circumstellar disk forming a one-armed spiral density pattern that precesses around the star with a period of a few years. Aims. This paper presents self-consistent models of polarimetric, photometric, spectrophotometric, and interferometric observations of the classical Be star zeta Tauri. The primary goal is to conduct a critical quantitative test of the global oscillation scenario. Methods. Detailed three-dimensional, NLTE radiative transfer calculations were carried out using the radiative transfer code HDUST. The most up-to-date research on Be stars was used as input for the code in order to include a physically realistic description for the central star and the circumstellar disk. The model adopts a rotationally deformed, gravity darkened central star, surrounded by a disk whose unperturbed state is given by a steady-state viscous decretion disk model. It is further assumed that this disk is in vertical hydrostatic equilibrium. Results. By adopting a viscous decretion disk model for zeta Tauri and a rigorous solution of the radiative transfer, a very good fit of the time-average properties of the disk was obtained. This provides strong theoretical evidence that the viscous decretion disk model is the mechanism responsible for disk formation. The global oscillation model successfully fitted spatially resolved VLTI/AMBER observations and the temporal V/R variations in the H alpha and Br gamma lines. This result convincingly demonstrates that the oscillation pattern in the disk is a one-armed spiral. Possible model shortcomings, as well as suggestions for future improvements, are also discussed.
Resumo:
Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims. We here discuss the properties of the double cluster Abell 1758 at a redshift z similar to 0.279. These clusters show strong evidence for merging. Methods. We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 x 1.16 deg(2), or 16.1 x 17.6 Mpc(2). Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results. The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical simulations, we could mimic the most prominent features present in the metallicity map and propose an explanation for the dynamical history of the cluster. We found in particular that in the metal-rich elongated regions of the North cluster, winds had been more efficient than ram-pressure stripping in transporting metal-enriched gas to the outskirts. Conclusions. We confirm the merging structure of the North and South clusters, both at optical and X-ray wavelengths.
Resumo:
Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.
Resumo:
Background: The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods: Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2) in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR) similar to 250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD) or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA) were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP) and heart rate variability (spectral analysis) one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting). Results: Higher glycemia (p < 0.05) and lower mean AP were observed in diabetics vs. nondiabetics (p < 0.05). Heart rate was higher in renal-denervated hypertensive and lower in diabetic-hypertensive rats (384.8 +/- 37, 431.3 +/- 36, 316.2 +/- 5, 363.8 +/- 12 bpm in SHR, RD-SHR, STZ-SHR and RD-STZ-SHR, respectively). Heart rate variability was higher in renal-denervated diabetic-hypertensive rats (55.75 +/- 25.21, 73.40 +/- 53.30, 148.4 +/- 93 in RD-SHR, STZ-SHR-and RD-STZ-SHR, respectively, p < 0.05), as well as the LF component of AP variability (1.62 +/- 0.9, 2.12 +/- 0.9, 7.38 +/- 6.5 in RD-SHR, STZ-SHR and RD-STZ-SHR, respectively, p < 0.05). GLUT2 renal content was higher in all groups vs. SHR. Conclusions: Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.
Resumo:
The aim of the present work was to analyze c-fos response within the trigeminal nucleus caudalis (TNC) of pinealectomized rats and animals that received intraperitoneal melatonin, after intracisternal infusion of capsaicin, used to induce intracranial trigeminovascular stimulation. Experimental groups consisted of animals that received vehicle solution (saline-ethanol-Tween 80, 8:1:1, diluted 1:50) only (VEI, n = 5); animals that received capsaicin solution (200 nM) only (CAP, n = 6); animals submitted to pinealectomy (PX, n = 5); sham-operated animals (SH, n = 5); animals submitted to pinealectomy followed by capsaicin stimulation (200 nM) after 15 days (PX + CAP, n = 7); and animals that received capsaicin solution (200 nM) and intraperitoneal melatonin (10 mg/kg) (CAP + MEL, n = 5). Control rats, receiving vehicle in the cisterna magna, showed a small number of c-fos-positive cells in the TNC (layer I/II) as well as the sham-operated and pinealectomized rats, when compared to animals stimulated by capsaicin. On the other hand, pinealectomized rats, which received capsaicin, presented the highest number of c-fos-positive cells. Animals receiving capsaicin and melatonin treatment had similar expression of the vehicle group. Our data provide experimental evidence to support the role of melatonin and pineal gland in the pathophysiology of neurovascular headaches.
Resumo:
Background: The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives: This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods: Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 mu g of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 mu g of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results: Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 mu g per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses. Conclusions: The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.
Resumo:
We describe a new exact relation for large N(c) QCD for the long-distance behavior of baryon form factors in the chiral limit. This model-independent relation is used to test the consistency of the structure of several baryon models. All 4D semiclassical chiral soliton models satisfy the relation, as does the Pomarol-Wulzer holographic model of baryons as 5D Skyrmions. However, remarkably, we find that the holographic model treating baryons as instantons in the Sakai-Sugimoto model does not satisfy the relation.