1000 resultados para GALILEI GROUP
Resumo:
Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
Resumo:
Electrooxidation of thionine on screen-printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen-printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 muM).
Resumo:
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH =CHCH2)CH3Si(C5H4)(2)]TiCl2 (1), [(CH2=CHCH2)CH3Si(C9H6)(2)]MCl2 [M = Ti (2), Zr (3), Hf (4)] and [(CH2=CHCH2)CH3Si(C13H8)(2)]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 10(6) g PE mol(-1) M h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene.
Resumo:
Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.
Resumo:
A Series of novel homo- and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5-bis (4-aminophenyl) pyridine and 2-(4aminophenyl)-5-aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60-9.64 dL/g (c = 0.5 g/dL in DMAC, 30 degrees C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548-598 degrees C in air. The glass transition temperatures of the PMDA-based samples are in the range of 395-438 degrees C, while the BPDA-based polyimides show two glass transition temperatures (T(g)1 and T(g)2), ranging from 268 to 353 degrees C and from 395 to 418 degrees C, respectively. The flexible films possess tensile modulus in the range of 3.42-6.39 GPa, strength in the range of 112-363 MPa and an elongation at break in the range of 1.2-69%. The strong reflection peaks in the wide-angle X-ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity.
Resumo:
A series of 2,3,7,8,12,13,17,18-octakis(alkyl-thio)tetraazaporphyrins (H(2)OATTAP) with different alkyl chain lengths have been synthesized. Cyclic voltammetry and differential pulse voltammetry have been used to investigate the effect of the controlled lengths of the eight peripheral thioether tails on the redox behavior of the molecules. The electrochemical reduction of octakis(hexyl-thio)tetraazaporphyrins, MOHTTAP (where M = Cu, Ni), was studied in 1,2-dichloroethane at a platinum electrode. The Cu derivative was oxidized in one single-electron-transfer step to yield a pi-cation radical and reduced in three single-electron-transfer steps to yield a pi-anion radical, dianion and trianion, respectively. For the Ni derivative, electron transfer reactions involving both the central metal atom and the macrocyclic ring were observed. Electron transfer pathways are proposed based upon voltammetric and in situ spectroelectrochemical results.
Resumo:
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. In this paper, an algorithm was developed by the all-paths topological symmetry algorithm to build the automorphism group of a chemical graph. A comparison of several topological symmetry algorithms reveals that the all-paths algorithm (APA) could yield the correct class of a chemical graph. It lays a foundation for the ESESOC system in computer-aided structure elucidation.
Resumo:
Aggregation behavior of two amphiphilic D-pi -A molecules bearing barbituric acid as both recogniton group and electron-drawing substituent, 5-(4-dodecyl oxybenzylidene)-(1H, 3H)-2,4,6-pyrimidine trione (PB12) and 5-(4-N,N-didodecyl aminobenzylidene)-(1H,3H)-2,4,6-pyrimidine trione (AB(12)) was studied by UV-visible, fluorescence, and surface voltaic spectroscopies (SPS). The experimental results indicate that PB12 tends to form J-aggregate and AB(12) tends to form H-aggregate under increasing concentration. An intramolecular twisted charge transfer (TICT) emission around 500 nm is observed when J-aggregate is formed between PB12 molecules, and an excimer emission around 600 nm is observed when H-aggregate is formed between AB(12) molecules.
Resumo:
It is necessary to generate automorphism group of chemical graph in computer-aided structure eluciation. In this paper, an algorithm is developed by all-path topological symmetry algorithm to build automorphism group of chemical graph. A comparison of several topological symmetry algorithm reveals that all-path algorthm can yield correct of class of chemical graph. It lays a foundation for ESESOC system for computer-aided structure elucidation.
Resumo:
Three novel series of monomers, namely n-1-bromo-[4-(4-methoxyphenylazo)phenyloxy]-alkanes (Bn, n = 3, 6, 10), n-[4-(4-methoxyphenylazo) phenyloxy]alkyloxy-4-methoxybenzene (Cn, n = 3, 6, 10) and n-[4-(4-methoxyphenylazo)phenyloxyl]alkyloxy-[4-methoxy-2,5-bis-(chloromethyl)] benzene (Dn, n = 3, 6, 10) were synthesized and characterized with FTIR, H-1 NMR, UV-visible and fluorescence spectroscopy. Their thermal behaviour was studied by different scanning calorimetry and polarizing optical microscopy. The results show that B3, B6 and C6 exhibit monotropic nematic liquid crystalline behaviour.
Resumo:
The banded textures in the films of a thermotropic liquid crystalline poly(aryl ether ketone) containing a lateral chloro group have been studied by means of transmission electron microscopy(TEM), electron diffraction(ED) and atomic force microscopy (AFM). The crystallization-induced Landed texture without external shear can be formed when the thin films were annealed at the temperature range(320-330 degrees C) of the liquid crystalline state from the melt, The results show that the banded regions have high orientation of single crystal based on the orthorhombic packing and the growing direction of the Lands is along the b axis of the crystals, This kind of single crystal-like bands is due to the different orientation of the packing molecular chains, The molecular chains of the dark bands in the bright field electron micrograph are perpendicular to the film plane, while the ones of the bright Lands are tilt along the b axis with the tilt angle upto +/-20 degrees.
Resumo:
Novel poly(aryl ether ketone)s containing a lateral methoxy group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and methoxyhydroquinone with 1,4-bis(4-fluorobenzoyl)benzene in a sulfolane solvent in the presence of anhydrous potassium carbonate. Their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques, e.g. differential scanning calorimetry (DSC), polarized light microscopy and temperature-dependent FTIR. Thermotropic liquid crystalline behaviour was observed in the copolymers containing 30-80 mol-% mexthoxyhydroquinone. Both melting (T-m) and isotropization (T-i) transitions appeared in the DSC curves. The polarized light microscopy study of the liquid crystalline copolymers suggested their ordered smectic structures. As expected, the copolymers had lower melting transitions than the biphenol-based homopoly(aryl ether ketone)s because of the copolymerization effect of the crystal-disrupting monomer methoxyhydroquinone.
Resumo:
A new series of side chain liquid crystal polymers based on the backbone of polymethacrylate containing 4-nitroazobenzene and 4-methoxybiphenyl group as side chain mesogen were prepared and characterized, FTIR, H-1 NMR, POM and WAXD were used to study the structure, phase behavior and mesophase texture of this series of SCLC copolymers. The researches show that polymer PM5MPP and copolymer M5MPP/MMEANB are enantiotropic liquid crystalline polymers, but polymer PMMEANB has no liquid crystalline properties. DSC results showed that the thermal stability of the mesophase of this series of copolymers was enhanced by the existence of intermolecular electron donor-acceptor interaction. It was found that the temperature range of the mesophase of the copolymers was broadened with increasing 4-nitroazobenzene units. The focal-conic texture observed by POM indicated that this series of the copolymers possessed the characteristics of smectic liquid crystal.
Resumo:
Novel main chain poly(aryl ether ketone)s containing a lateral phenyl group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and phenylhydroquinone with either 4,4'-difluorobenzophenone or 1,4-bis(4-fluorobenzoyl)benzene and their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques. Thermotropic liquid crystalline behaviour was observed in the copolymers containing 50 and 70mol% biphenol. Melting (T-m) and isotropization (T-i) transitions both appeared on the DSC thermograms. A banded texture was formed after shearing the sample in the liquid crystalline nematic state. As expected, each of the copolymers had a relatively lower melting transition than the biphenol-based homopoly(aryl ether ketone)s because of the copolymerization effect of the crystal-disrupting monomer phenylhydroquinone.