936 resultados para GADOLINIUM OXIDES
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
Necrotizing fasciitis is a rare, rapidly spreading, deep-seated infection causing thrombosis of the blood vessels located in the fascia. Necrotizing fasciitis is a surgical emergency. The diagnosis typically relies on clinical findings of severe sepsis and intense pain, although subacute forms may be difficult to recognize. Imaging studies can help to differentiate necrotizing fasciitis from infections located more superficially (dermohypodermitis). The presence of gas within the necrotized fasciae is characteristic but may be lacking. The main finding is thickening of the deep fasciae due to fluid accumulation and reactive hyperemia, which can be visualized using computed tomography and, above all, magnetic resonance imaging (high signal on contrast-enhanced T1 images and T2 images, best seen with fat saturation). These findings lack specificity, as they can be seen in non-necrotizing fasciitis and even in non-inflammatory conditions. Signs that support a diagnosis of necrotizing fasciitis include extensive involvement of the deep intermuscular fascias (high sensitivity but low specificity), thickening to more than 3mm, and partial or complete absence on post-gadolinium images of signal enhancement of the thickened fasciae (fairly high sensitivity and specificity). Ultrasonography is not recommended in adults, as the infiltration of the hypodermis blocks ultrasound transmission. Thus, imaging studies in patients with necrotizing fasciitis may be challenging to interpret. Although imaging may help to confirm deep tissue involvement and to evaluate lesion spread, it should never delay emergency surgical treatment in patients with established necrotizing fasciitis.
Resumo:
BACKGROUND: Brain metastases (BMs) pose a clinical challenge in breast cancer (BC). Lapatinib or temozolomide showed activity in BM. Our study assessed the combination of both drugs as treatment for patients with HER2-positive BC and BM. METHODS: Eighteen patients were enrolled, with sixteen of them having recurrent or progressive BM. Any type of previous therapy was allowed, and disease was assessed by gadolinium (Gd)-enhanced magnetic resonance imaging (MRI). The primary end points were the evaluation of the dose-limiting toxicities (DLTs) and the determination of the maximum-tolerated dose (MTD). The secondary end points included objective response rate, clinical benefit and duration of response. RESULTS: The lapatinib-temozolomide regimen showed a favorable toxicity profile because the MTD could not be reached. The most common adverse events (AEs) were fatigue, diarrhea and constipation. Disease stabilization was achieved in 10 out of 15 assessable patients. The estimated median survival time for the 16 patients with BM reached 10.94 months (95% CI: 1.09-20.79), whereas the median progression-free survival time was 2.60 months [95% confidence interval (CI): 1.82-3.37]. CONCLUSIONS: The lapatinib-temozolomide combination is well tolerated. Preliminary evidence of clinical activity was observed in a heavily pretreated population, as indicated by the volumetric reductions occurring in brain lesions.
Resumo:
PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.
Resumo:
Boron adsorption was studied in five representative soils (Rhodic Hapludox, Arenic Paleudalf and three Typic Hapludox) from the State of São Paulo, Brazil. Adsorption was higher in the clayey Oxisols, followed by the Alfisol and the coarser Oxisols. Calcium carbonate promoted an increase in the amount of adsorbed boron in all soils, with the most pronounced effect in the coarser-textured Oxisols. High correlation coefficients were found between adsorbed boron and clay and amorphous aluminum oxide contents and specific surface area (r = 0.79, 0.76 and 0.73, respectively, p < 0.01). Clay content, free aluminum oxide, and hot CaCl2 (0.01 mol L-1)-extracted boron explained 93% of the variation of adsorbed boron. Langmuir and Freundlich isotherms fitted well to the adsorbed data, and highest values for maximum boron adsorption were found in clayey soils, which were significantly correlated with contents of total, free and amorphous iron and aluminum oxides, as well with the physical attributes. Ninety four percent of the variation in the maximum adsorption could be related to the free iron content.
Resumo:
RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.
Resumo:
This study reassesses the development of compositional layering during the growth of granitic plutons, with emphasis on fractional crystallization and its interaction with both injection and inflation-related deformation. The Dolbel batholith (SW Niger) consists of 14, kilometre-sized plutons emplaced by pulsed magma inputs. Each pluton has a coarse-grained core and a peripheral layered series. Rocks consist of albite (An(<= 11)), K-feldspar (Or(96 99), Ab(1) (4)), quartz, edenite (X(Mg)=0337-0.55), augite (X(Mg)=0.65-0.72) and accessories (apatite, titanite and Fe-Ti-oxides). Whole-rock compositions are metaluminous, sodic (K(2)O/Na(2)O=0.49-0.62) and iron-rich [FeO(tot)/(FeO(tot)+MgO)=0.65-0.82]. The layering is present as size-graded and modally graded, sub-vertical, rhythmic units. Each unit is composed of three layers, which are, towards the interior: edenite +/- plagioclase (C(a/p)), edenite+plagioclase+augite+quartz (C(q)), and edenite+plagioclase+augite+quartz+K-feldspar (C(k)). All phases except quartz show zoned microstructures consisting of external intercumulus overgrowths, a central section showing oscillatory zoning and, in the case of amphibole and titanite, complexly zoned cores. Ba and Sr contents of feldspars decrease towards the rims. Plagioclase crystal size distributions are similar in all units, suggesting that each unit experienced a similar thermal history. Edenite, characteristic of the basal C(a/p) layer, is the earliest phase to crystallize. Microtextures and phase diagrams suggest that edenite cores may have been brought up with magma batches at the site of emplacement and mechanically segregated along the crystallized wall, whereas outer zones of the same crystals formed in situ. The subsequent C(q) layers correspond to cotectic compositions in the Qz-Ab-Or phase diagram at P(H2O)=5 kbar. Each rhythmic unit may therefore correspond to a magma batch and their repetition to crystallization of recurrent magma recharges. Microtextures and chemical variations in major phases allow four main crystallization stages to be distinguished: (1) open-system crystallization in a stirred magma during magma emplacement, involving dissolution and overgrowth (core of edenite and titanite crystals); (2) in situ fractional crystallization in boundary layers (C(a/p) and C(q) layers); (3) equilibrium `en masse' eutectic crystallization (C(k) layers); (4) compaction and crystallization of the interstitial liquid in a highly crystallized mush (e. g. feldspar intercumulus overgrowths). It is concluded that the formation of the layered series in the Dolbel plutons corresponds principally to in situ differentiation of successive magma batches. The variable thickness of the Ck layers and the microtextures show that crystallization of a rhythmic unit stops and it is compacted when a new magma batch is injected into the chamber. Therefore, assembly of pulsed magma injections and fractional crystallization are independent, but complementary, processes during pluton construction.
Resumo:
BACKGROUND: In spite of robust knowledge about underlying ischemic myocardial damage, acute coronary syndromes (ACS) with culprit-free angiograms raise diagnostic concerns. The present study aimed to evaluate the additional value of cardiac magnetic resonance (CMR) over commonly available non-CMR standard tests, for the differentiation of myocardial injury in patients with ACS and non-obstructed coronary arteries. MATERIAL/METHODS: Patients with ACS, elevated hs-TnT, and a culprit-free angiogram were prospectively enrolled into the study between January 2009 and July 2013. After initial evaluation with standard tests (ECG, echocardiography, hs-TnT) and provisional exclusion of acute myocardial infarction (AMI) in coronary angiogram, patients were referred for CMR with the suspicion of myocarditis or Takotsubo cardiomyopathy (TTC). According to the result of CMR, patients were reclassified as having myocarditis, AMI, TTC, or non-injured myocardium as assessed by late gadolinium enhancement. RESULTS: Out of 5110 patients admitted with ACS, 75 had normal coronary angiograms and entered the study; 69 of them (92%) were suspected for myocarditis and 6 (8%) for TTC. After CMR, 49 patients were finally diagnosed with myocarditis (65%), 3 with TTC (4%), 7 with AMI (9%), and 16 (21%) with non-injured myocardium. The provisional diagnosis was changed or excluded in 23 patients (31%), with a 9% rate of unrecognized AMI. CONCLUSIONS: The study results suggest that the evaluation of patients with ACS and culprit-free angiogram should be complemented by a CMR examination, if available, because the initial work-up with non-CMR tests leads to a significant proportion of misdiagnosed AMI.
Resumo:
The objective was to design a vascular phantom compatible with digital subtraction angiography, computerized tomography angiography, ultrasound and magnetic resonance angiography (MRA). Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from three-dimensional (3-D) reconstructed images. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included around the conduit to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, geometries of pathological vessels were modeled. During the experimental testing, fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRA after 5 hours. Moreover, no significant deformation of the vascular conduit was noted during the fabrication process (confirmed by microtome slicing along the vessel). The potential use of the phantom for calibration, rescaling, and fusion of 3-D images obtained from the different modalities as well as its use for the evaluation of intra- and inter-modality comparative studies of imaging systems are discussed. In conclusion, the vascular phantom can allow accurate calibration of radiological imaging devices based on x-ray, magnetic resonance and ultrasound and quantitative comparisons of the geometric accuracy of the vessel lumen obtained with each of these methods on a given well defined 3-D geometry.
Resumo:
Purpose: To compare the additional informations obtainedwith axial and sagittal T2 weighted with fat saturation(T2FS) and T1 weighted with Gadolinium iv sequenceswith fat saturation (T1FSGd) to detect degenerativeinflammatory lumbar spine lesions.Materials and Methods: Our retrospective study included73 patients (365 lumbar levels) with lumbar spinedegenerative disease (25 males, 48 females, mean age56 years). MRI protocol was performed with T1 and T2weighted sagittal and T2 weighted axial sequences(standard protocol), axial and sagittal T2FS and T1FSGd.Images were independently analyzed by two musculoskeletalradiologists and a neurosurgeon. Two groups ofsequences were analyzed: standard + T2FS sequences(group 1), standard + T1FSGd sequences (group 2).Degenerative inflammatory lumbar spine lesions werenoted at each level in: anterior column (vertebralendplate), spinal canal (epidural and peri-radicular fat)and posterior column (facet joint with capsular recessand subchondral bone).Results: Degenerative inflammatory lesions were present in18% (66/365) of levels in group 1, and 48% (175/365) oflevels in group 2. In details, lesions were noted in group 1 and2 respectively:-in 44 and 66 levels for anterior column,-in22 and 131 levels for posterior column,-in 0 and 36 levelsfor spinal canal. All these differences were statisticallysignificant. Intra and Interobserver agreements were good.Conclusion: The T1FSGd sequence is more sensitive thanT2FS to show the degenerative inflammatory lumbar spinelesions, especially in spinal canal and posterior column.
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniquesare used. First, Xenon CT is an equilibrium technique based on a freely diffusibletracer. First pass of iodinated contrast injected intravenously is a second method,more widely available. Both methods are proven to be robust and quantitative,thanks to the linear relationship between contrast concentration and x-ray attenuation.For the CT methods, concern regarding x-ray doses delivered to the patientsneed to be addressed. MR is also able to assess brain perfusion using the firstpass of gadolinium based contrast agent injected intravenously. This method hasto be considered as a semi-quantitative because of the non linear relationshipbetween contrast concentration and MR signal changes. Arterial spin labelingis another MR method assessing brain perfusion without injection of contrast. Insuch case, the blood flow in the carotids is magnetically labelled by an externalradiofrequency pulse and observed during its first pass through the brain. Eachof this various CT and MR techniques have advantages and limits that will be illustratedand summarised.Learning Objectives:1. To understand and compare the different techniques for brain perfusionimaging.2. To learn about the methods of acquisition and post-processing of brainperfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
In the past decade, many studies have been conducted to determine the health effects induced by exposure to engineered nanomaterials (NMs). Specifically for exposure via inhalation, numerous in vitro and animal in vivo inhalation toxicity studies on several types of NMs have been published. However, these results are not easily extrapolated to judge the effects of inhaling NMs in humans, and few published studies on the human response to inhalation of NMs exist. Given the emergence of more industries utilizing iron oxide nanoparticles as well as more nanomedicine applications of superparamagnetic iron oxide nanoparticles (SPIONs), this review presents an overview of the inhalation studies that have been conducted in humans on iron oxides. Both occupational exposure studies on complex iron oxide dusts and fumes, as well as human clinical studies on aerosolized, micron-size iron oxide particles are discussed. Iron oxide particles have not been described to elicit acute inhalation response nor promote lung disease after chronic exposure. The few human clinical studies comparing inhalation of fine and ultrafine metal oxide particles report no acute changes in the health parameters measured. Taken together existing evidence suggests that controlled human exposure to iron oxide nanoparticles, such as SPIONs, could be conducted safely.
Resumo:
BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.
Resumo:
In the main report concerning the role that magnesium may have in highway concrete aggregate, over 20,000 electron microprobe data were obtained, primarily from automated scans, or traverses, across dolomite aggregate grains and the adjacent cement paste. Representative traverses were shown in figures and averages of the data were presented in Table II. In this Appendix, detailed representative and selected analyses of carbonate aggregate only are presented. These analyses were not presented in the main report because they would be interesting to only a few specialists in dolomite· rocks. In this Appendix, individual point analyses of mineral compositions in the paste have been omitted along with dolomite compositions at grain boundaries and cracks. Clay minerals and quartz inclusions in the aggregate are also not included. In the analyses, the first three column headings from left to right show line number, x-axis, and y-axis (Line number is an artifact of the computer print-out for each new traverse. Consecutive line numbers indicate a continuous traverse with distances between each point of 1.5 to a few μ-m. X-axis and y-axis are coordinates on the electron microscope stage). The next columns present weight percent oxide content of FeO, K20, CaO, Si02, Al203, MgO, SrO, BaO, MnO, Na20, and C02 (calculated assuming the number of moles of C02 is equal to the sum of moles of oxides, chiefly CaO and MgO), TOTAL (the sum of all oxides), and total (sum of all oxides excluding COi). In many of the analyses total is omitted.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.