965 resultados para Fredholm-Stieltjes integral equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper, the well known Adomian Decomposition Method (ADM) is modified to solve the parabolic equations. The present method is quite different than the numerical method. The results are compared with the existing exact or analytical method. The already known existing Adomian Decomposition Method is modified to improve the accuracy and convergence. Thus, the modified method is named as Modified Adomian Decomposition Method (MADM). The Modified Adomian Decomposition Method results are found to converge very quickly and are more accurate compared to ADM and numerical methods. MADM is quite efficient and is practically well suited for use in these problems. Several examples are given to check the reliability of the present method. Modified Adomian Decomposition Method is a non-numerical method which can be adapted for solving parabolic equations. In the current paper, the principle of the decomposition method is described, and its advantages are shown in the form of parabolic equations. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The periodic 3D Navier-Stokes equations are analyzed in terms of dimensionless, scaled, L-2m-norms of vorticity D-m (1 <= m <= infinity). The first in this hierarchy, D-1, is the global enstrophy. Three regimes naturally occur in the D-1-D-m plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime 1]; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show, by using direct numerical simulations and theory, how, by increasing the order of dissipativity (alpha) in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case alpha -> infinity U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of alpha greater than a crossover value alpha(crossover). We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluctuations of a Markovian jump process with one or more unidirectional transitions, where R-ij > 0 but R-ji = 0, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theorem is a sum of the entropy produced in the bidirectional transitions and a dynamical contribution, which depends on the residence times in the states connected by the unidirectional transitions. The convergence of the integral fluctuation theorem is studied numerically and found to show the same qualitative features as systems exhibiting microreversibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We set up the theory of newforms of half-integral weight on Gamma(0)(8N) and Gamma(0)(16N), where N is odd and squarefree. Further, we extend the definition of the Kohnen plus space in general for trivial character and also study the theory of newforms in the plus spaces on Gamma(0)(8N), Gamma(0)(16N), where N is odd and squarefree. Finally, we show that the Atkin-Lehner W-operator W-4 acts as the identity operator on S-2k(new)(4N), where N is odd and squarefree. This proves that S-2k(-)(4) = S-2k(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo simulation methods involving splitting of Markov chains have been used in evaluation of multi-fold integrals in different application areas. We examine in this paper the performance of these methods in the context of evaluation of reliability integrals from the point of view of characterizing the sampling fluctuations. The methods discussed include the Au-Beck subset simulation, Holmes-Diaconis-Ross method, and generalized splitting algorithm. A few improvisations based on first order reliability method are suggested to select algorithmic parameters of the latter two methods. The bias and sampling variance of the alternative estimators are discussed. Also, an approximation to the sampling distribution of some of these estimators is obtained. Illustrative examples involving component and series system reliability analyses are presented with a view to bring out the relative merits of alternative methods. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrodinger equation.