874 resultados para Forms of expression
Resumo:
The Ctr family is an essential part of the copper homeostasis machinery and its members share sequence homology and structural and functional features. Higher eukaryotes express two members of this family Ctr1 and Ctr2. Numerous structural and functional studies are available for Ctr1, the only high affinity Cu(I) transporter thus far identified. Ctr1 holigotrimers mediate cellular copper uptake and this protein was demonstrated to be essential for embryonic development and to play a crucial role in dietary copper acquisition. Instead very little is known about Ctr2, it bears structural homology to the yeast vacuolar copper transporter, which mediates mobilization of vacuolar copper stores. Recent studies using over-expressed epitope-tagged forms of human Ctr2 suggested a function as a low affinity copper transporter that can mediate either copper uptake from the extracellular environment or mobilization of lysosomal copper stores. Using an antibody that recognizes endogenous mouse Ctr2, we studied the expression and localization of endogenous mouse Ctr2 in cell culture and in mouse models to understand its regulation and function in copper homeostasis. By immunoblot we observed a regulation of mCtr2 protein levels in a copper and Ctr1 dependent way. Our observations in cells and transgenic mice suggest that lack of Ctr1 induces a strong downregulation of Ctr2 probably by a post-translational mechanism. By indirect immunofluorescence we observed an exclusive intracellular localization in a perinuclear compartment and no co-localization with lysosomal markers. Immunofluorescence experiments in Ctr1 null cells, supported by sequence analysis, suggest that lysosomes may play a role in mCtr2 biology not as resident compartment, but as a degradation site. In appendix a LC-mass method for analysis of algal biotoxins belonging to the family of PsP (paralytic shellfish poisoning) is described.
Resumo:
BACKGROUND: Psoriasis is a chronic immune-mediated skin disease, in which interleukins 12 and 23 have been postulated to play a critical role. However, the cellular source of these cytokines in psoriatic lesions are still poorly defined and their relative contribution in inducing skin inflammation has been discussed controversially. OBJECTIVES: To investigate immunoreactivity of the bioactive forms of IL-12 and IL-23 in plaque psoriasis and to characterize the dendritic cell (DC) and macrophage subsets responsible for the production of these cytokines. METHODS: Immunohistochemistry was performed on normal skin (n=11) as well as non-lesional (n=11) and lesional (n=11) skin of patients with plaque psoriasis using monoclonal antibodies targeting the bioactive forms of IL-12 (IL-12p70) and IL-23 (IL-23p19/p40) on serial cryostat sections using the alkaline phosphatase-antialkaline phosphatase. Co-localization of IL-12 and IL-23 with different dendritic cells and macrophage cell markers (CD1a, CD11c, CD14, CD32, CD68, CD163, CD208/DC-LAMP) was performed using double immunofluorescence staining. RESULTS: Immunoreactivity for IL-12 and IL-23 was significantly enhanced in lesional psoriatic skin as compared to non-lesional and normal skin. No difference was observed between IL-12 and IL-23 immunoreactivity in any skin types. Both IL-12 and IL-23 immunoreactivity was readily detected mainly in CD11c+, CD14+, CD32+, CD68+ and some CD163+, DC-LAMP+ cells. IL-12 and occasionally IL-23 were also found in some CD1a+ dendritic cells. In addition, an enhanced expression mainly of IL-23 was observed in keratinocytes. CONCLUSIONS: Bioactive forms of IL-12 and IL-23 are highly expressed in various DC and macrophage subsets and their marked in situ production suggest that both cytokines have crucial pathogenic role in psoriasis.
Resumo:
A differential expression of sarcoplasmic reticulum calcium-ATPase (SERCA2a) and phospholamban (PLB) characterizes the remodeling process in heart failure and atrial arrhythmias in adult patients. Gender is known to modulate the course and prognosis of different forms of heart disease. We hypothesized that gender plays a role in molecular changes of myocardial calcium regulating components already in childhood. Moreover, we studied the influence of volume overloaded (VO) on SERCA2a and PLB in pediatric patients. Quantitative reverse transcription-polymerase chain reaction was used to measure mRNA expression of SERCA2a and PLB in atrial myocardium from 30 pediatric patients (12 girls, 18 boys). Eighteen patients had VO right atria, and 12 patients had not-overloaded atria (NO). Protein expression was studied by Western blot. In the entire population, SERCA2a and PLB expression was not different between girls and boys. If hemodynamic overload was taken into account, SERCA2a mRNA expression was significantly reduced in the VO group compared with the NO group (P = 0.021). The VO versus NO difference was restricted to boys, which corresponds to a highly significant interaction of gender versus VO status (P = 0.002). The PLB to SERCA2a protein ratio was significantly lower in girls (P = 0.028). The decrease in SERCA2a mRNA expression in VO atrial myocardium and the PLB to SERCA2a ratio of protein expression was modulated by gender in this pediatric population. To our knowledge, this study is the first to show the impact of gender on the differential expression of calcium-regulating components in pediatric cardiac patients.
Resumo:
We used micro-infusions during eyelid conditioning in rabbits to investigate the relative contributions of cerebellar cortex and the underlying deep nuclei (DCN) to the expression of cerebellar learning. These tests were conducted using two forms of cerebellum-dependent eyelid conditioning for which the relative roles of cerebellar cortex and DCN are controversial: delay conditioning, which is largely unaffected by forebrain lesions, and trace conditioning, which involves interactions between forebrain and cerebellum. For rabbits trained with delay conditioning, silencing cerebellar cortex by micro-infusions of the local anesthetic lidocaine unmasked stereotyped short-latency responses. This was also the case after extinction as observed previously with reversible blockade of cerebellar cortex output. Conversely, increasing cerebellar cortex activity by micro-infusions of the GABA(A) antagonist picrotoxin reversibly abolished conditioned responses. Effective cannula placements were clustered around the primary fissure and deeper in lobules hemispheric lobule IV (HIV) and hemispheric lobule V (HV) of anterior lobe. In well-trained trace conditioned rabbits, silencing this same area of cerebellar cortex or reversibly blocking cerebellar cortex output also unmasked short-latency responses. Because Purkinje cells are the sole output of cerebellar cortex, these results provide evidence that the expression of well-timed conditioned responses requires a well-timed decrease in the activity of Purkinje cells in anterior lobe. The parallels between results from delay and trace conditioning suggest similar contributions of plasticity in cerebellar cortex and DCN in both instances.
Resumo:
Retinoic acid has profound effects on the cellular growth and differentiation of a variety of cells. However, the molecular basis of retinoic acid action has, until recently, not been well understood. The identification of retinoic acid receptors which bear a high degree of homology to members of the steroid receptor super-family has dramatically altered our understanding of the biology of retinoids. The focus of this dissertation has been toward identification of retinoic acid binding proteins responsible for the effects of this molecule on gene expression.^ We have characterized in detail the retinoic acid-dependent induction of tissue transglutaminase gene expression in a myeloid cell line, human promyelocytic leukemia cells (HL-60 cells). Using cDNA probes specific for tissue transglutaminase, we have determined that the retinoic acid induced increase in enzyme level is due to an increase in the level of tissue transglutaminase mRNA. We have used this model as a probe to investigate the molecular basis of retinoid regulated gene expression.^ This thesis demonstrates that retinoic acid receptors are expressed in cells which induce tissue transglutaminase expression in response to retinoic acid. In Hl-60 cells retinoic acid-induced transglutaminase expression is associated with saturable nuclear retonic acid binding. Transcripts for both the alpha and beta forms of the retinoic acid receptors can be detected in these cells. Pretreatment of HL-60 cells with agents that potentiate retinoic acid-induced transglutaminase expression also modestly induced the alpha form of the retinoic acid receptor. Studies in macrophages and umbilical vein endothelial cells have also associated expression of the beta form of the retinoic acid with retinoic acid induced tissue transglutaminase expression.^ To investigate directly if retinoic acid receptors regulate retinoic acid-induced tissue transglutaminase expression we developed a series of stably transfected Balb-c 3T3 cells expressing different levels of the beta or gamma form of the retinoic acid receptor. These studies indicated that either the beta or gamma receptor can stimulate endogenous tissue transglutaminase expression in response to retinoic acid. These are among the first studies in the steroid field to describe regulation of an endogenous gene by a transfected receptor. ^
Resumo:
An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^
Resumo:
Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^
Resumo:
Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. in order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.
Resumo:
The Molybdenum-nitrogenase is responsible for most biological nitrogen fixation activity (BNF) in the biosphere. Due to its great agronomical importance, it has been the subject of profound genetic and biochemical studies. The Mo nitrogenase carries at its active site a unique iron-molybdenum cofactor (FeMoco) that consists of an inorganic 7 Fe, 1 Mo, 1 C, 9 S core coordinated to the organic acid homocitrate. Biosynthesis of FeMo-co occurs outside nitrogenase through a complex and highly regulated pathway involving proteins acting as molecular scaffolds, metallocluster carriers or enzymes that provide substrates in appropriate chemical forms. Specific expression regulatory factors tightly control the accumulation levels of all these other components. Insertion of FeMo-co into a P-cluster containing apo-NifDK polypeptide results in nitrogenase reconstitution. Investigation of FeMo-co biosynthesis has uncovered new radical chemistry reactions and new roles for Fe-S clusters in biology.
Resumo:
We have identified the mutation responsible for the autosomal recessive wasted (wst) mutation of the mouse. Wasted mice are characterized by wasting and neurological and immunological abnormalities starting at 21 days after birth; they die by 28 days. A deletion of 15.8 kb in wasted mice abolishes expression of a gene called Eef1a2, encoding a protein that is 92% identical at the amino acid level to the translation elongation factor EF1α (locus Eef1a). We have found no evidence for the involvement of another gene in this deletion. Expression of Eef1a2 is reciprocal with that of Eef1a. Expression of Eef1a2 takes over from Eef1a in heart and muscle at precisely the time at which the wasted phenotype becomes manifest. These data suggest that there are tissue-specific forms of the translation elongation apparatus essential for postnatal survival in the mouse.
Resumo:
Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder characterized by an insidious onset and progressive course. The disease has a frequency of about 1 in 20,000 and is transmitted in an autosomal dominant fashion with almost complete penetrance. Deletion of an integral number of tandemly arrayed 3.3-kb repeat units (D4Z4) on chromosome 4q35 is associated with FSHD but otherwise the molecular basis of the disease and its pathophysiology remain obscure. Comparison of mRNA populations between appropriate cell types can facilitate identification of genes relevant to a particular biological or pathological process. In this report, we have compared mRNA populations of FSHD and normal muscle. Unexpectedly, the dystrophic muscle displayed profound alterations in gene expression characterized by severe underexpression or overexpression of specific mRNAs. Intriguingly, many of the deregulated mRNAs are muscle specific. Our results suggest that a global misregulation of gene expression is the underlying basis for FSHD, distinguishing it from other forms of muscular dystrophy. The experimental approach used here is applicable to any genetic disorder whose pathogenic mechanism is incompletely understood.
Resumo:
Using truncated forms of recombinant yeast karyopherins α and β in in vitro binding assays, we mapped the regions of karyopherin α that bind to karyopherin β and the regions of karyopherin β that interact with karyopherin α and with Ran-GTP. Karyopherin α’s binding region for karyopherin β was localized to its N-terminal domain, which contains several clusters of basic residues, whereas karyopherin β’s binding region for karyopherin α was localized to an internal region containing two clusters of acidic residues. Karyopherin β’s binding region for Ran-GTP overlaps with that for karyopherin α and comprises at least one of the two acidic clusters required for karyopherin α binding in addition to further downstream determinants not required for karyopherin α binding. Overexpression in yeast of fragments containing either karyopherin β’s binding region for α and Ran-GTP or karyopherin α’s binding region for β resulted in sequestration of most of the cytosolic karyopherin α or karyopherin β, respectively, in complexes containing the truncated proteins. As these binding region-containing fragments lack other domains required for function of the corresponding protein, the overexpression of either fragment also inhibited in vivo nuclear import of a model reporter protein as well as cell growth.
Resumo:
Skeletal muscle contains spectrin (or spectrin I) and fodrin (or spectrin II), members of the spectrin supergene family. We used isoform-specific antibodies and cDNA probes to investigate the molecular forms, developmental expression, and subcellular localization of the spectrins in skeletal muscle of the rat. We report that β-spectrin (βI) replaces β-fodrin (βII) at the sarcolemma as skeletal muscle fibers develop. As a result, adult muscle fibers contain only α-fodrin (αII) and the muscle isoform of β-spectrin (βIΣ2). By contrast, other types of cells present in skeletal muscle tissue, including blood vessels and nerves, contain only α- and β-fodrin. During late embryogenesis and early postnatal development, skeletal muscle fibers contain a previously unknown form of spectrin complex, consisting of α-fodrin, β-fodrin, and the muscle isoform of β-spectrin. These complexes associate with the sarcolemma to form linear membrane skeletal structures that otherwise resemble the structures found in the adult. Our results suggest that the spectrin-based membrane skeleton of muscle fibers can exist in three distinct states during development.
Resumo:
The semaphorins comprise a large family of membrane-bound and secreted proteins, some of which have been shown to function in axon guidance. We have cloned a transmembrane semaphorin, Sema W, that belongs to the class IV subgroup of the semaphorin family. The mouse and rat forms of Sema W show 97% amino acid sequence identity with each other, and each shows about 91% identity with the human form. The gene for Sema W is divided into 15 exons, up to 4 of which are absent in the human cDNAs that we sequenced. Unlike many other semaphorins, Sema W is expressed at low levels in the developing embryo but was found to be expressed at high levels in the adult central nervous system and lung. Functional studies with purified membrane fractions from COS7 cells transfected with a Sema W expression plasmid showed that Sema W has growth-cone collapse activity against retinal ganglion-cell axons, indicating that vertebrate transmembrane semaphorins, like secreted semaphorins, can collapse growth cones. Genetic mapping of human SEMAW with human/hamster radiation hybrids localized the gene to chromosome 2p13. Genetic mapping of mouse Semaw with mouse/hamster radiation hybrids localized the gene to chromosome 6, and physical mapping placed the gene on bacteria artificial chromosomes carrying microsatellite markers D6Mit70 and D6Mit189. This localization places Semaw within the locus for motor neuron degeneration 2, making it an attractive candidate gene for this disease.
Resumo:
We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the presynaptic cell at synapses between embryonic hippocampal neurons in culture, the dominant negative TrkB.T1 inhibited two forms of synaptic potentiation induced by the neurotrophin brain-derived neurotrophic factor (BDNF): (i) greater evoked synaptic transmission and (ii) higher frequency of spontaneous miniature synaptic currents. These inhibition effects are not seen if the transgene is expressed only in the postsynaptic cell. We conclude that BDNF-TrkB signal transduction in the presynaptic terminal leads to both types of potentiation and is therefore the primary cause of synaptic enhancement by BDNF in these neurons.