940 resultados para Formal specification
Resumo:
Architectural description languages (ADLs) are used to specify a high-level, compositional view of a software application, specifying how a system is to be composed from coarse-grain components. ADLs usually come equipped with a formal dynamic semantics, facilitating specification and analysis of distributed and event-based systems. In this paper, we describe the TrustME, an ADL framework that provides both a process and a structural view of web service-based systems. We use Petri-net descriptions to give a dynamic view of business workflow for web service collaboration. We adapt the approach of Schmidt to define a form of Meyer's design-by-contract for configuring workflow architectures. This serves as a configuration-level means of constructing safer, more robust systems.
Resumo:
This paper provides a semantics for the UML-RSDS (Reactive System Development Support) subset of UML, using the real-time action logic (RAL) formalism. We show how this semantics can be used to resolve some ambiguities and omissions in UML semantics, and to support reasoning about specifications using the B formal method and tools. We use `semantic profiles' to provide precise semantics for different semantic variation points of UML. We also show how RAL can be used to give a semantics to notations for real-time specification in UML. Unlike other approaches to UML semantics, which concentrate on the class diagram notation, our semantic representation has behaviour as a central element, and can be used to define semantics for use cases, state machines and interactions, in addition to class diagrams.
Resumo:
During the development of system requirements, software system specifications are often inconsistent. Inconsistencies may arise for different reasons, for example, when multiple conflicting viewpoints are embodied in the specification, or when the specification itself is at a transient stage of evolution. These inconsistencies cannot always be resolved immediately. As a result, we argue that a formal framework for the analysis of evolving specifications should be able to tolerate inconsistency by allowing reasoning in the presence of inconsistency without trivialisation, and circumvent inconsistency by enabling impact analyses of potential changes to be carried out. This paper shows how clustered belief revision can help in this process. Clustered belief revision allows for the grouping of requirements with similar functionality into clusters and the assignment of priorities between them. By analysing the result of a cluster, an engineer can either choose to rectify problems in the specification or to postpone the changes until more information becomes available.