949 resultados para Flores.
Resumo:
Este artículo forma parte de la investigación maestría de la autora. En este artículo se identifican qué tendencias cognitivas presentan estudiantes de bachillerato cuando se enfrentan al tema de tangentes a las cónicas en un curso de Geometría Analítica (UNAM, 1996). También se analiza si este curso permite una mejor comprensión de la sintaxis algebraica.
Resumo:
El presente reporte de investigación de tipo cualitativo, tiene por objeto dar a conocer, como parte de la investigación, resultados relacionados con los procesos de generalización que se presentan en alumnos de edades 14-15 años al tratar con sucesiones figurativas, en donde el patrón matemático se comporta en forma lineal y cuadrática. Se señala que el hacer uso de patrones, desarrolla el pensamiento algebraico, así como también permite a los estudiantes desarrollar la comprensión del concepto como establecer relaciones matemáticas. Como parte de la perspectiva teórica se ha empleado el Modelo Teórico Local, considerando tres de los cuatro componentes: Competencia formal, modelo de enseñanza y procesos cognitivos.
Resumo:
En esta investigación, en proceso, pretendemos el diseño, desarrollo y evaluación de Objetos de Aprendizaje (OA) lo que permitirá probar y validar una metodología de diseño y producción de OA al interior de la institución, así como la utilización de la Web como medio de interacción y cooperación entre individuos en los procesos educativos. La producción de OA con esta metodología se plantea bajo un equipo de trabajo que analiza las necesidades del grupo destinatario, los contenidos, los recursos tecnológicos, los procesos de evaluación, entre otros, para la producción de cada OA.
Resumo:
El Modelo Curricular de la República Argentina incluye como uno de sus objetivos prácticas cooperativas en la Educación Secundaria. El presente trabajo desarrolla un proyecto para dar lugar a la estimulación de las habilidades interpersonales a través de actividades para la clase de Matemática correspondiente a la etapa de formalización de estructuras conceptuales-procedimentales, apoyadas en los Pilares del Cooperativismo, con una concepción de Educación para la Libertad, la Justicia y la Solidaridad.
Resumo:
En este trabajo se reportan resultados de investigaciones sobre el concepto de límite, particularmente aquellas centradas en el aspecto cognitivo, y estos, tanto en el nivel medio superior como en el nivel superior. Estas investigaciones las clasificamos en tres grupos: las que tratan el preconcepto de límite, sobre las concepciones que se tienen del concepto de límite y las que reportan dificultades al tratamiento del concepto de límite. Algunos de los resultados de estas investigaciones es que el preconcepto está asociado a “una barrera no rebasable”; en cuanto a las concepciones sobre el concepto están las que se relacionan con “valor inalcanzable”, “como aproximación”, entre otras; y algunas dificultades como al redactar la definición del límite.
Resumo:
El objetivo de este trabajo es analizar de qué forma el uso de la computadora, como herramienta pedagógica, puede ayudar a superar a estudiantes brasileños de 1º año de una Escuela Técnica de Nivel Medio Integrado en el estado de Sergipe las dificultades de aprendizaje del 1º modelo de funciones trigonométricas a partir de la presentación de atividades potencialmente significativas. Los análisis se apoyan en la Teoría de las Situaciones didácticas de Brousseau (2008), en los princípios de la Ingeniería Didáctica de Artigue (1988) y en los conocimientos previos conforme a Moreira (2005). Se analisa la trayectoria histórica de las funciones trigonométricas, tres libros didácticos y, por último, la secuencia didáctica propuesta.
Resumo:
El objetivo de este trabajo de investigación es identificar las organizaciones praxeológicas que permiten la articulación de la noción de función afín con otras nociones tanto en el contexto matemático como extramatemático en la Educación Media en Brasil. Los análisis se apoyan en la Teoría Antropológica de lo didáctico de Chevallard (2001) y los enfoques teóricos en términos de marcos definidos por Douady (1992) y niveles de conocimiento que se esperan de los estudiantes según la definición de Robert (1997). Tres libros de texto que fueron analizados darán una visión general de las relaciones institucionales que sobreviven actualmente en Brasil. Observamos la existencia de diferentes formas de articulación que dependen de las técnicas desarrolladas, necesitando la atención de profesores que deben proponer el mayor número posible de situaciones para que sus estudiantes puedan aplicar la noción de función afín en diferentes tareas, sean ellas escolares o no.
Resumo:
Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.
Resumo:
La propuesta de innovación surge por las dificultades de los estudiantes en el aprendizaje de la geometría proporcional, en particular, en la propiedad Potencia de un punto exterior a la circunferencia.Para su diseño se considera como referente teórico, la articulación propuesta por Montoya (2010), complemento entre “Paradigmas geométricos” de Houdement y Kuzniak y los Procesos de Pruebas de Balacheff. En base a antecedentes obtenidos de un estudio epistemológico del objeto, se diseñan distintas pruebas que propician el tránsito entre los paradigmas de la geometría natural (GI ) y la geometría axiomática natural (GII) , aportando así en el aprendizaje de la propiedad en estudio.
Resumo:
La enseñanza de la Geometría es una ramificación de las Matemáticas que tiene una importancia fundamental en el razonamiento de los chicos y chicas de cualquiera nivel de la Educación Básica. El presente artículo tiene como objetivo presentar los resultados obtenidos de la evaluación diagnostica de Geometría Euclidiana Plana en los alumnos de Enseñanza Medio Superior. La metodología utilizada ha sido la Cuantitativa con Estudio Descriptivo. La muestra ha sido compuesta de 534 alumnos de cuatro escuelas particulares de Enseñanza Mediana de Belém – Pará – Brasil. Ha sido aplicado un cuestionario con cinco cuestiones básicas de Geometría. Los resultados muestran que los discentes están llegando en la enseñanza medio superior con poco o casi ningún conocimiento de Geometría.
Resumo:
La idea de este trabajo es presentar los instrumentos que se utilizaban principalmente en la Ingeniería y las Carreras de Ciencias, para realizar los cálculos, antes de la época de la Informática e inclusive antes de la calculadora científica. Con la Regla de Cálculo a los estudiantes se les enseñaban a realizar los cálculos desde el Bachillerato, en su formación Profesional, utilizando la regla de Cálculo, y ya siendo Profesionistas con el mencionado instrumento se diseñaron: puentes, edificios, embarcaciones, aviones, vehículos y tantos otros productos de la ciencia y la tecnología, así como los primeros vehículos espaciales. Para la construcción de la Regla de Cálculo se utilizaron los logaritmos y las escalas logarítmicas, para manejar éste instrumento se aplican las propiedades de los logaritmos.
Resumo:
La presente investigación, de orden cualitativo y en curso, es parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura del “Isomorfismo de Medidas” propuesta por Vergnaud (1995). La propuesta teórica se basa en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico; en la segunda fase se diseñara y aplicará el modelo de enseñanza centrando el interés en la resolución de problemas con isomorfismo de medidas. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vi
Resumo:
El presente trabajo plantea la posibilidad de impulsar la Interpretación Global, en diversas representaciones para desarrollar tratamientos que permitan fomentar la exploración de sus contenidos. La experiencia se llevó a cabo con alumnos que cursaban la asignatura de álgebra del nivel medio superior, cuyo objetivo fue identificar las conjeturas y procesos cognitivos que el alumno desarrolla cuando se ha tenido la vivencia de explorar tratamientos cualitativos y cuantitativos en múltiples representaciones. Los resultados muestran la identificación de patrones cuando se plantean situaciones familiares en el alumno, así como el anclaje del contexto para algunos estudiantes y la descontextualización para otros.
Resumo:
En el escrito se presentan algunos resultados obtenidos en un trabajo de investigación enmarcado en la teoría socioepistemológica. Particularmente se discute un análisis de los aprendizajes matemáticos asociados a la noción de función como relación entre variables, en jóvenes de bachillerato desde una perspectiva contextual del conocimiento. Se infiere que el contexto guarda estrecha relación con las formas en que estudiantes movilizan su matemática y su pensar, por lo que el aprendizaje se caracteriza como un proceso relacional epistémico contextual.
Resumo:
En este escrito se presentan resultados de un estudio socioepistemológico para diseñar unidades didácticas basadas en prácticas y verificar la efectividad de organizadores de contenido matemático en su diseño, en el área de Precálculo. En el estudio se buscó determinar condiciones y situaciones para la generación de aprendizajes matemáticos asociados a las nociones de variación y cambio. Se identificó que la relación entre las experiencias de los estudiantes, la naturaleza variacional de las situaciones y la matemática en actividades de naturaleza social fueron un factor determinante en el éxito en la resolución de los diseños de aprendizaje.