994 resultados para Fire insurance agents.
Resumo:
A toxicity model on dividing the computational domain into two parts, a control region (CR) and a transport region (TR), for species calculation was recently developed. The model can be incorporated with either the heat source approach or the eddy dissipation model (EDM). The work described in this paper is a further application of the toxicity model with modifications of the EDM for vitiated fires. In the modified EDM, chemical reaction only occurs within the CR. This is consistent with the approach used in the species concentration calculations within the toxicity model in which yields of combustion products only change within the CR. A vitiated large room-corridor fire, in which the carbon monoxide (CM) concentrations are very high and the temperatures are relatively low at locations distant from the original fire source, is simulated using the modified EDM coupled with the toxicity model. Compared with the EDM, the modified EDM provide significant improvements in the predictions of temperatures at remote locations. Predictions of species concentrations at various locations follow the measured trends. Good agreements between the measured and predicted species concentrations are obtained at the vitiated fire stage.
Resumo:
The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride-based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)-based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values
Resumo:
The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.
Resumo:
In this paper, coupled fire and evacuation simulation tools are used to simulate the Station Nightclub fire. This study differs from the analysis conducted by NIST in three key areas; (1)an enhanced flame spread model and (2)a toxicity generation model are used, (3)the evacuation is coupled to the fire simulation. Predicted early burning locations in the full-scale fire simulation are in line with photographic evidence and the predicted onset of flashover is similar to that produced by NIST. However, it is suggested that both predictions of the flashover time are approximately 15 sec earlier than actually occurred. Three evacuation scenarios are then considered, two of which are coupled with the fire simulation. The coupled fire and evacuation simulation suggests that 180 fatalities result from a building population of 460. With a 15 sec delay in the fire timeline, the evacuation simulation produces 84 fatalities which are in good agreement with actual number of fatalities. An important observation resulting from this work is that traditional fire engineering ASET/RSET calculations which do not couple the fire and evacuation simulations have the potential to be considerably over optimistic in terms of the level of safety achieved by building designs.
Resumo:
This paper describes the introduction of chained signage systems into evacuation simulation models. Signage systems are widely used in buildings to provide information for wayfinding, thereby providing exiting information during emergencies and assisting in navigation during normal circulation of pedestrians. Recently a system was developed to introduce simple signs into egress models. The system, known as Visibility Catchment Area or VCA, allowed similated agents to interact with signs which point directly to an exit and signs which are located directly above the exit. However, this approach was not able to represent the more general situation of a sign netwokr within an arbitrarily complex building. In this paper we extend the method to include chained signage systems which provides simulated agents that are unfamiliar with the structure a means by which to navigate to an emergency exit. The model includes the associated navigation behaviours exhibited by occupants that rely on a signage system for navigation including: Searching behaviours, Backtracking behaviours, Lost behaviours and Communication behaviours. The new features are demonstrated through a series of demonstration cases and are shown to produce plausible results.
Resumo:
This paper presents a description of a new agent based elevator sub-model developed as part of the buildingEXODUS software intended for both evacuation and circulation applications. A description of each component of the newly developed model is presented, including the elevator kinematics and associated pedestrian behaviour. The elevator model is then used to investigate a series of full building evacuation scenarios based on a hypothetical 50 floor building with four staircases and a population of 7,840 agents. The analysis explores the relative merits of using up to 32 elevators (arranged in four banks) and various egress strategies to evacuate the entire building population. Findings from the investigation suggest that the most efficient evacuation strategy utilises a combination of elevators and stairs to empty the building and clear the upper half of the building in minimum time. Combined stair elevator evacuation times have been shown to be as much as 50% faster than stair only evacuation times.
Resumo:
This paper presents data relating to pedestrian escalator behaviour collected in an underground station in Shanghai, China. While data was not collected under emergency or simulated emergency conditions, it is argued that the data collected under rush-hour conditions - where commuters are under time pressures to get to work on time - may be used to approximate emergency evacuation conditions - where commuters are also under time pressures to exit the building as quickly as possible. Data pertaining to escalator/stair choice, proportion of walkers to riders, walker speeds and side usage are presented. The collected data is used to refine the buildingEXODUS escalator model allowing the agents to select whether to use an escalator or neighbouring parallel stair based on congestion conditiions at the base of the stair/escalator and expected travel times. The new model, together with the collected data, is used to simulate a series of hypothetical evacuation scenarios to demonstrate the impact of escalators on evacuation performance.
Resumo:
Within the building evacuation context, wayfinding describes the process in which an individual located within an arbitrarily complex enclosure attempts to find a path which leads them to relative safety, usually the exterior of the enclosure. Within most evacuation modelling tools, wayfinding is completely ignored; agents are either assigned the shortest distance path or use a potential field to find the shortest path to the exits. In this paper a novel wayfinding technique that attempts to represent the manner in which people wayfind within structures is introduced and demonstrated through two examples. The first step is to encode the spatial information of the enclosure in terms of a graph. The second step is to apply search algorithms to the graph to find possible routes to the destination and assign a cost to the routes based on their personal route preferences such as "least time" or "least distance" or a combination of criteria. The third step is the route execution and refinement. In this step, the agent moves along the chosen route and reassesses the route at regular intervals and may decide to take an alternative path if the agent determines that an alternate route is more favourable e.g. initial path is highly congested or is blocked due to fire.
Resumo:
Over the last three decades, the fire safety codes have been changing from a prescriptive approach to a performance-based one. Some countries, such as the USA, Sweden, New Zealand, Australia and the UK, are in an advanced stage of development and implementation of the performance-based codes. However, there are some difficulties in this process. Most of them are due to the uncertainties associated with fire design. For instance, one of the questions that need to be answered is how to select the most probable fire origin room (FOR)? On the other hand, to know where the FOR is located is also an important aspect in terms of forensic issues. Given that, to address this question is an important step for the establishment of fire designs (i.e., pre-fire phases) and also for fire investigations (i.e., post-fire phases). This paper proposes a methodology for selecting the FOR through the use of a mathematical multicriteria decision-making model: the analytical hierarchy process (AHP). The proposed method is then applied to a hypothetical study case. The results are presented and discussed in this paper.
Resumo:
A library of 19 cycloruthenated derivatives is constructed by making use of the well-known cyclometalation reaction. Their geometries are modified in a straightforward manner by addition of either mono- or bidentate ligands, such as bipyridine, phenanthroline, 1,2-bis(diphenylphosphanyl)ethane, dimethylphenylphosphane, triphenylphosphane, and 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA) ligands, to cationic cycloruthenated centers. The antitumor properties of the compounds thus obtained are investigated in order to compare them with recently reported ruthenium complexes and cisplatin. IC50 values against mammalian cells (A-172, HCT-116, and RDM-4) are determined for the library compounds and some of them, such as those derived from orthoruthenated phenylpyridine and a bidentate N,N ligand, display activity of the same order of magnitude as cisplatin.