997 resultados para Femtosecond laser facility
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
Morphological and functional effects of transmyocardial laser revascularization (TMLR) are analyzed in an acute setting on a porcine model. Ten channels were drilled in the left lateral wall of the heart of 15 pigs (mean weight, 73 +/- 4 kg) with a Holmium-YAG laser (wavelength: 2.1 mu, probe diameter: 1.75 mm). Echocardiographic control was performed before the TMLR procedure as well as 5 min and 30 min thereafter. Echocardiographic parameters were recorded in short-axis at the level of the laser channels, and included left ventricular ejection fraction, fractional shortening and segmental wall motility of the channels' area (scale 0-3: 0 = normal, 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). After sacrifice the lased region was sliced perpendicularly to the channels for histological and morphometrical analysis. Five minutes after the drilling of the channels, all the echocardiographic index worsened significantly in comparison with baseline values (p < 0.01). All recovered after 30 min and showed no difference with baseline values. Cross-section of the channel lesions measured 8.8 +/- 2.4 mm2 which is more than three times that of the probe (p < 0.01). In acute conditions, the lesions due to the TMLR probe are significantly larger than the probe itself and cause a transient drop of the segmental wall motility on a healthy myocardium. These results suggest that TMLR should be used cautiously in the clinical setting for patients with an impaired ventricular function.
Resumo:
BACKGROUND: Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.¦METHODS: Laser Doppler flow (FluxExplorer) and mole analyser (MA) score (FotoFinder) were applied to histologically verified melanocytic nevi (33) and malignant melanomas (12).¦RESULTS: Mean perfusion and MA scores were significantly increased in melanoma compared to nevi. However, applying an empirically determined threshold of 16% perfusion increase only 42% of the melanomas fulfilled the criterion of malignancy, whereas with the mole analyzer score 82% of the melanomas fulfilled the criterion of malignancy.¦CONCLUSION: Laser Doppler imaging is a highly sensitive technology to assess skin and skin tumor perfusion in vivo. Although mean perfusion is higher in melanomas compared to nevi the high numbers of false negative results hamper the use of this technology for early melanoma detection.
Resumo:
Most available studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few focus on air quality at workplaces. The objective of this study is to physically and chemically characterize the Pb-rich particles emitted at different workplaces in a lead recycling plant. A multi-scale characterization was conducted from bulk analysis to the level of individual particles, to assess the particles properties in relation with Pb speciation and availability. Process PM from various origins were sampled and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces, Emissions PM present in channeled emissions.These particles first differed by their morphology and size distribution, with finer particles found in emissions. Differences observed in chemical composition could be explained by the industrial processes. All PM contained the same major phases (Pb, PbS, PbO, PbSO4 and PbO·PbSO4) but differed on the nature and amount of minor phases. Due to high content in PM, Pb concentrations in the CaCl2 extractant reached relatively high values (40 mg.L-1). However, the ratios (soluble/total) of CaCl2 exchangeable Pb were relatively low (< 0.02%) in comparison with Cd (up to 18%). These results highlight the interest to assess the soluble fractions of all metals (minor and major) and discuss both total metal concentrations and ratios for risk evaluations. In most cases metal extractability increased with decreasing size of particles, in particular, lead exchangeability was highest for channeled emissions. Such type of study could help in the choice of targeted sanitary protection procedures and for further toxicological investigations. In the present context, particular attention is given to Emissions and Furnace PM. Moreover, exposure to other metals than Pb should be considered. [Authors]
Resumo:
Abstract. Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characteriza- tion and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is com- bined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS in- strumental error is small enough to enable detection of pre- cursory displacements of millimetric magnitude. This con- sists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Dis- placement measurement are improved considerably by ap- plying Nearest Neighbour (NN) averaging, which reduces the error (1σ ) up to a factor of 6. This technique was ap- plied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumen- tal error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by apply- ing the NN averaging method. These results show that mil- limetric displacements prior to failure can be detected using TLS.
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
State University Audit Report
Resumo:
State University Audit Report of Iowa State University
Resumo:
PURPOSE: To report the use of argon laser iridoplasty in the management of uveitic acute angle-closure glaucoma. METHODS: Interventional case report. RESULTS: A 46-year-old man developed uveitic acute angle-closure glaucoma with an intraocular pressure (IOP) of 65 mmHg. After unsuccessful attempts with medical treatment and two laser peripheral iridotomies, iridoplasty allowed to break posterior synechiae, open the angle, and reduce the IOP within a few hours. CONCLUSIONS: Argon laser iridoplasty allowed rapid reduction of IOP and prevented the need for emergency surgery. Therefore, the authors stipulate that it is a viable management option in active uveitic acute angle-closure glaucoma.
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report