975 resultados para False alarms
Resumo:
OBJECTIVE: To evaluate an automated seizure detection (ASD) algorithm in EEGs with periodic and other challenging patterns. METHODS: Selected EEGs recorded in patients over 1year old were classified into four groups: A. Periodic lateralized epileptiform discharges (PLEDs) with intermixed electrical seizures. B. PLEDs without seizures. C. Electrical seizures and no PLEDs. D. No PLEDs or seizures. Recordings were analyzed by the Persyst P12 software, and compared to the raw EEG, interpreted by two experienced neurophysiologists; Positive percent agreement (PPA) and false-positive rates/hour (FPR) were calculated. RESULTS: We assessed 98 recordings (Group A=21 patients; B=29, C=17, D=31). Total duration was 82.7h (median: 1h); containing 268 seizures. The software detected 204 (=76.1%) seizures; all ictal events were captured in 29/38 (76.3%) patients; in only in 3 (7.7%) no seizures were detected. Median PPA was 100% (range 0-100; interquartile range 50-100), and the median FPR 0/h (range 0-75.8; interquartile range 0-4.5); however, lower performances were seen in the groups containing periodic discharges. CONCLUSION: This analysis provides data regarding the yield of the ASD in a particularly difficult subset of EEG recordings, showing that periodic discharges may bias the results. SIGNIFICANCE: Ongoing refinements in this technique might enhance its utility and lead to a more extensive application.
Resumo:
Purpose: To evaluate the long-term outcome (up to 7 years) of presumed ocular tuberculosis (TB) when the therapeutic decision was based on WHO guidelines. Methods: Twelve out of 654 new uveitic patients (1998-2004) presented with choroiditis and positive tuberculosis skin test (TST) (skin lesion diameter >15 mm). Therapy was administered according to WHO recommendations after ophthalmic and systemic investigation. The area size of ocular lesions at presentation and after therapy, measured on fluorescein and indocyanine green angiographies, was considered the primary outcome. Relapse of choroiditis was considered a secondary outcome. The T-SPOTTB test was performed when it became available. Results: Visual acuity (VA) significantly improved after therapy (p=0.0357). The mean total surface of fluorescein lesions at entry was 44.8±20.9 (arbitrary units) and decreased to 32.5±16.9 after therapy (p=0.0165). The mean total surface of indocyanine green lesions at entry was 24.5±13.3 and decreased to 10.8±5.4 after therapy (p=0.0631). The T-SPOT TB revealed 2 false TST-positive results. The mean follow-up was 4.5±1.5 years. Two relapses out of 10 confirmed ocular TB was observed after complete lesion healing, 2.5 years and 4.5 years after therapy, respectively. Conclusions: A decrease of ocular lesion mean size and a mean improvement of VA were observed after antituberculous therapy. Our long-term follow-up of chorioretinal lesions demonstrated relapse of ocular tuberculosis in 10% of patients with confirmed ocular TB, despite complete initial retinal scarring.
Resumo:
Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects.
Resumo:
PURPOSE: To evaluate the diagnostic performance of abdominal radiography in the detection of illegal intracorporeal containers (hereafter, packets), with low-dose computed tomography (CT) as the reference standard. MATERIALS AND METHODS: This study was approved by the institutional ethical review board, with written informed consent. From July 2007 to July 2010, 330 people (296 men, 34 women; mean age, 32 years [range, 18-55 years]) suspected of having ingested drug packets underwent supine abdominal radiography and low-dose CT. The presence or absence of packets at abdominal radiography was reported, with low-dose CT as the reference standard. The density and number of packets (≤ 12 or >12) at low-dose CT were recorded and analyzed to determine whether those variables influence interpretation of results at abdominal radiography. RESULTS: Packets were detected at low-dose CT in 53 (16%) suspects. Sensitivity of abdominal radiography for depiction of packets was 0.77 (41 of 53), and specificity was 0.96 (267 of 277). The packets appeared isoattenuated to the bowel contents at low-dose CT in 16 (30%) of the 53 suspects with positive results. Nineteen (36%) of the 53 suspects with positive low-dose CT results had fewer than 12 packets. Packets that were isoattenuated at low-dose CT and a low number of packets (≤12) were both significantly associated with false-negative results at abdominal radiography (P = .004 and P = .016, respectively). CONCLUSION: Abdominal radiography is mainly limited by low sensitivity when compared with low-dose CT in the screening of people suspected of carrying drug packets. Low-dose CT is an effective imaging alternative to abdominal radiography.
Resumo:
The accuracy of peritoneoscopy and liver biopsy in the diagnosis of hepatic cirrhosis was compared in 473 consecutive patients submitted to both procedures. One hundred and fifty-two of them had cirrhosis diagnosed by one or both methods. There was 73% agreement between the two procedures. `Apparent' false-negative results were 17·7% for peritoneoscopy and 9·3% for liver biopsy. The incidence of false-negative results in the diagnosis of cirrhosis can be reduced by combining both procedures.
Resumo:
Positron emission tomography (PET)/CT plays a major role in staging, assessing response to treatment and during follow-up of paediatric Hodgkin's lymphoma (HL). Owing to high sensitivity to detect viable tumoural tissue, negative PET/CT is highly predictive of survival. However, (18)F-FDG is not specific for malignant disease and may concentrate in numerous benign/inflammatory lesions that may cause 'false-positive' results and follow-up PET/CT studies should be interpreted with caution. We report a case of pulmonary inflammatory myofibroblastic tumour, which developed during follow-up in a young patient with complete remission of a stage IIB HL and was fully treated with surgical resection.
Resumo:
Coma after cardiac arrest (CA) is an important cause of admission to the ICU. Prognosis of post-CA coma has significantly improved over the past decade, particularly because of aggressive postresuscitation care and the use of therapeutic targeted temperature management (TTM). TTM and sedatives used to maintain controlled cooling might delay neurologic reflexes and reduce the accuracy of clinical examination. In the early ICU phase, patients' good recovery may often be indistinguishable (based on neurologic examination alone) from patients who eventually will have a poor prognosis. Prognostication of post-CA coma, therefore, has evolved toward a multimodal approach that combines neurologic examination with EEG and evoked potentials. Blood biomarkers (eg, neuron-specific enolase [NSE] and soluble 100-β protein) are useful complements for coma prognostication; however, results vary among commercial laboratory assays, and applying one single cutoff level (eg, > 33 μg/L for NSE) for poor prognostication is not recommended. Neuroimaging, mainly diffusion MRI, is emerging as a promising tool for prognostication, but its precise role needs further study before it can be widely used. This multimodal approach might reduce false-positive rates of poor prognosis, thereby providing optimal prognostication of comatose CA survivors. The aim of this review is to summarize studies and the principal tools presently available for outcome prediction and to describe a practical approach to the multimodal prognostication of coma after CA, with a particular focus on neuromonitoring tools. We also propose an algorithm for the optimal use of such multimodal tools during the early ICU phase of post-CA coma.
Resumo:
As the prevalence of obesity and diabetes are continually increasing, the use of "false sugars" otherwise known as sweeteners, and their associated health issues are being more and more discussed. A higher sugared power, less calories as well as a moderated or non-existent effect on blood sugar would lead to believe that sweeteners are helpful. However, we CANNOT say that they are THE solution as they can contain calories, may have some undesired effects, and moreover they ease the conscience without actually allowing a weight loss with their sole use. They are to be used with judgment, wittingly and especially when comparing sweetened products. The sweetener myth is often far from reality. It is therefore important to give our patients the means to analyze their dietary intake with regard to their sweeteners ingestion.
Resumo:
Of 10 patients with neuroblastoma who had both 123I-MIBG scintigraphy and MRI at diagnosis, four presented with bone marrow metastasis that was diagnosed by both imaging modalities and confirmed by bone marrow biopsy and smears. This report focuses on the follow up of the four patients with bone marrow metastasis. MIBG scintigraphy and MRI were concordant in two patients, a case of normalization and a case of relapse in the seventh dorsal vertebra confirmed by surgical biopsy. The last two patients presented a normalized MIBG scan for marrow infiltration after chemotherapy but persistent abnormal MRI signal of several vertebrae, suggesting marrow infiltration, up to 27 mo after the end of chemotherapy in one case. In the second patient, MRI bone marrow aspect returned to normal 4 mo after the end of chemotherapy. Bone marrow biopsy remained negative in these two MIBG-negative patients. These cases suggest that in presence of complete normalization of the MIBG scan after chemotherapy, the persistence of a hypointense signal on bone marrow on T1WI does not necessarily indicate persistence of disease but may be due to delayed normalization. Therefore, attention must be paid to the delay of signal normalization on MRI (which can be as long as more than 2 yr after the end of chemotherapy) in order to avoid false-positive interpretation.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
"Thou shalt not bear false witness," as we all know. Yet changing one's mind in case of respectable reasons seems to be allowed. Which is good news for politicians, but reduces the effectiveness of prospective voting, i.e. the focus on "the commitments of candidates to take actions that citizens desire to be taken" (Powell 2000: 9). This may be bad news for voters. By comparing pre-election commitments of Swiss members of parliament (MPs) with actual voting behaviour in the lower house of parliament, the following article explores the question how much confidence voters can have in prospective voting and what factors explain (non-)fulfilment of election pledges.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
In the 1920s, Ronald Fisher developed the theory behind the p value and Jerzy Neyman and Egon Pearson developed the theory of hypothesis testing. These distinct theories have provided researchers important quantitative tools to confirm or refute their hypotheses. The p value is the probability to obtain an effect equal to or more extreme than the one observed presuming the null hypothesis of no effect is true; it gives researchers a measure of the strength of evidence against the null hypothesis. As commonly used, investigators will select a threshold p value below which they will reject the null hypothesis. The theory of hypothesis testing allows researchers to reject a null hypothesis in favor of an alternative hypothesis of some effect. As commonly used, investigators choose Type I error (rejecting the null hypothesis when it is true) and Type II error (accepting the null hypothesis when it is false) levels and determine some critical region. If the test statistic falls into that critical region, the null hypothesis is rejected in favor of the alternative hypothesis. Despite similarities between the two, the p value and the theory of hypothesis testing are different theories that often are misunderstood and confused, leading researchers to improper conclusions. Perhaps the most common misconception is to consider the p value as the probability that the null hypothesis is true rather than the probability of obtaining the difference observed, or one that is more extreme, considering the null is true. Another concern is the risk that an important proportion of statistically significant results are falsely significant. Researchers should have a minimum understanding of these two theories so that they are better able to plan, conduct, interpret, and report scientific experiments.
Resumo:
The objective of this study was to comprehensively compare the genomic profiles in the breast of parous and nulliparous postmenopausal women to identify genes that permanently change their expression following pregnancy. The study was designed as a two-phase approach. In the discovery phase, we compared breast genomic profiles of 37 parous with 18 nulliparous postmenopausal women. In the validation phase, confirmation of the genomic patterns observed in the discovery phase was sought in an independent set of 30 parous and 22 nulliparous postmenopausal women. RNA was hybridized to Affymetrix HG_U133 Plus 2.0 oligonucleotide arrays containing probes to 54,675 transcripts, scanned and the images analyzed using Affymetrix GCOS software. Surrogate variable analysis, logistic regression, and significance analysis of microarrays were used to identify statistically significant differences in expression of genes. The false discovery rate (FDR) approach was used to control for multiple comparisons. We found that 208 genes (305 probe sets) were differentially expressed between parous and nulliparous women in both discovery and validation phases of the study at an FDR of 10% and with at least a 1.25-fold change. These genes are involved in regulation of transcription, centrosome organization, RNA splicing, cell-cycle control, adhesion, and differentiation. The results provide initial evidence that full-term pregnancy induces long-term genomic changes in the breast. The genomic signature of pregnancy could be used as an intermediate marker to assess potential chemopreventive interventions with hormones mimicking the effects of pregnancy for prevention of breast cancer.