995 resultados para Fact models
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
New Keynesian models rely heavily on two workhorse models of nominal inertia - price contracts of random duration (Calvo, 1983) and price adjustment costs (Rotemberg, 1982) - to generate a meaningful role for monetary policy. These alternative descriptions of price stickiness are often used interchangeably since, to a first order of approximation they imply an isomorphic Phillips curve and, if the steady-state is efficient, identical objectives for the policy maker and as a result in an LQ framework, the same policy conclusions. In this paper we compute time-consistent optimal monetary policy in bench-mark New Keynesian models containing each form of price stickiness. Using global solution techniques we find that the inflation bias problem under Calvo contracts is significantly greater than under Rotemberg pricing, despite the fact that the former typically significant exhibits far greater welfare costs of inflation. The rates of inflation observed under this policy are non-trivial and suggest that the model can comfortably generate the rates of inflation at which the problematic issues highlighted in the trend inflation literature emerge, as well as the movements in trend inflation emphasized in empirical studies of the evolution of inflation. Finally, we consider the response to cost push shocks across both models and find these can also be significantly different. The choice of which form of nominal inertia to adopt is not innocuous.
Resumo:
The paper considers the use of artificial regression in calculating different types of score test when the log
Resumo:
This work compares the structural/dynamics features of the wild-type alb-adrenergic receptor (AR) with those of the D142A active mutant and the agonist-bound state. The two active receptor forms were compared in their isolated states as well as in their ability to form homodimers and to recognize the G alpha q beta 1 gamma 2 heterotrimer. The analysis of the isolated structures revealed that, although the mutation- and agonist-induced active states of the alpha 1b-AR are different, they, however, share several structural peculiarities including (a) the release of some constraining interactions found in the wild-type receptor and (b) the opening of a cytosolic crevice formed by the second and third intracellular loops and the cytosolic extensions of helices 5 and 6. Accordingly, also their tendency to form homodimers shows commonalties and differences. In fact, in both the active receptor forms, helix 6 plays a crucial role in mediating homodimerization. However, the homodimeric models result from different interhelical assemblies. On the same line of evidence, in both of the active receptor forms, the cytosolic opened crevice recognizes similar domains on the G protein. However, the docking solutions are differently populated and the receptor-G protein preorientation models suggest that the final complexes should be characterized by different interaction patterns.
Resumo:
Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.
Resumo:
We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.
Resumo:
Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting.
Resumo:
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.
Resumo:
In his timely article, Cherniss offers his vision for the future of "Emotional Intelligence" (EI). However, his goal of clarifying the concept by distinguishing definitions from models and his support for "Emotional and Social Competence" (ESC) models will, in our opinion, not make the field advance. To be upfront, we agree that emotions are important for effective decision-making, leadership, performance and the like; however, at this time, EI and ESC have not yet demonstrated incremental validity over and above IQ and personality tests in meta-analyses (Harms & Credé, 2009; Van Rooy & Viswesvaran, 2004). If there is a future for EI, we see it in the ability model of Mayer, Salovey and associates (e.g, Mayer, Caruso, & Salovey, 2000), which detractors and supporters agree holds the most promise (Antonakis, Ashkanasy, & Dasborough, 2009; Zeidner, Roberts, & Matthews, 2008). With their use of quasi-objective scoring measures, the ability model grounds EI in existing frameworks of intelligence, thus differentiating itself from ESC models and their self-rated trait inventories. In fact, we do not see the value of ESC models: They overlap too much with current personality models to offer anything new for science and practice (Zeidner, et al., 2008). In this commentary we raise three concerns we have with Cherniss's suggestions for ESC models: (1) there are important conceptual problems in both the definition of ESC and the distinction of ESC from EI; (2) Cherniss's interpretation of neuroscience findings as supporting the constructs of EI and ESC is outdated, and (3) his interpretation of the famous marshmallow experiment as indicating the existence of ESCs is flawed. Building on the promise of ability models, we conclude by providing suggestions to improve research in EI.
Resumo:
Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.
Resumo:
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradient is subject to the interplay of biotic interactions in complement to abiotic environmental filtering. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose to use food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve both species distribution and community forecasts. Most importantly, this combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may be recurrent. Our combined approach points a promising direction forward to model the spatial variation of entire species interaction networks. Our work has implications for studies of range shifting species and invasive species biology where it may be unknown how a given biota might interact with a potential invader or in future climate.