899 resultados para Extreme ultraviolet


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a species of major interest for aquaculture, the sex determination system (SDS) of Nile tilapia, Oreochromis niloticus, has been widely investigated. In this species, sex determination is considered to be governed by the interactions between a complex system of genetic sex determination factors (GSD) and the influence of temperature (TSD) during a critical period. Previous studies were exclusively carried out on domestic stocks with the genetic and maintenance limitations associated. Given the wide distribution and adaptation potential of the Nile tilapia, we investigated under controlled conditions the sex determination system of natural populations adapted to three extreme thermal regimes: stable extreme environments in Ethiopia, either cold temperatures in a highland lake (Lake Koka), or warm temperatures in hydrothermal springs (Lake Metahara), and an environment with large seasonal variations in Ghana (Kpandu, Lake Volta). The sex ratio analysis was conducted on progenies reared under constant basal (27 degrees C) or high (36 degrees C) temperatures during the 30 days following yolk-sac resorption. Sex ratios of the progenies reared at standard temperature suggest that the three populations share a similar complex GSD system based on a predominant male heterogametic factor with additional influences of polymorphism at this locus and/or action of minor factors. The three populations presented a clear thermosensitivity of sex differentiation, with large variations in the intensity of response depending on the parents. This confirms the presence of genotype-environment interactions in TSD of Nile tilapia. Furthermore the existence of naturally sex-reversed individuals is strongly suggested in two populations (Kpandu and Koka). However, it was not possible here to infer if the sex-inversion resulted from minor genetic factors and/or environmental influences. The present study demonstrated for the first time the conservation of a complex SDS combining polymorphic GSD and TSD components in natural populations of Nile tilapia. We discuss the evolutionary implications of our findings and highlight the importance of field investigations of sex determination. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magmatic volatiles play a crucial role in volcanism, from magma production at depth to generation of seismic phenomena to control of eruption style. Accordingly, many models of volcano dynamics rely heavily on behavior of such volatiles. Yet measurements of emission rates of volcanic gases have historically been limited, which has restricted model verification to processes on the order of days or longer. UV cameras are a recent advancement in the field of remote sensing of volcanic SO2 emissions. They offer enhanced temporal and spatial resolution over previous measurement techniques, but need development before they can be widely adopted and achieve the promise of integration with other geophysical datasets. Large datasets require a means by which to quickly and efficiently use imagery to calculate emission rates. We present a suite of programs designed to semi-automatically determine emission rates of SO2 from series of UV images. Extraction of high temporal resolution SO2 emission rates via this software facilitates comparison of gas data to geophysical data for the purposes of evaluating models of volcanic activity and has already proven useful at several volcanoes. Integrated UV camera and seismic measurements recorded in January 2009 at Fuego volcano, Guatemala, provide new insight into the system’s shallow conduit processes. High temporal resolution SO2 data reveal patterns of SO2 emission rate relative to explosions and seismic tremor that indicate tremor and degassing share a common source process. Progressive decreases in emission rate appear to represent inhibition of gas loss from magma as a result of rheological stiffening in the upper conduit. Measurements of emission rate from two closely-spaced vents, made possible by the high spatial resolution of the camera, help constrain this model. UV camera measurements at Kilauea volcano, Hawaii, in May of 2010 captured two occurrences of lava filling and draining within the summit vent. Accompanying high lava stands were diminished SO2 emission rates, decreased seismic and infrasonic tremor, minor deflation, and slowed lava lake surface velocity. Incorporation of UV camera data into the multi-parameter dataset gives credence to the likelihood of shallow gas accumulation as the cause of such events.