917 resultados para Exons (Genetics)
Resumo:
Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.
Resumo:
Sulfate is an essential ion required for numerous functions in mammalian physiology. Due to its hydrophilic nature, cells require sulfate transporters on their plasma membranes to allow entry of sulfate into cells. In this study, we identified a new mouse Na+-sulfate cotransporter (mNaS2), characterized its tissue distribution and determined its cDNA and gene (Slc13a4) structures. mNaS2 mRNA was expressed in placenta, brain, lung, eye, heart, testis, thymus and liver. The mouse NaS2 cDNA spans 3384 nucleotides and its open frame encodes a protein of 624 amino acids. Slc13a4 maps to mouse chromosome 6131 and contains 16 exons, spanning over 40 kb in length. Its 5'-flanking region contains CART- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, MTF-1, STAT6 and HNF4 consensus sequences. This is the first study to define the tissue distribution of mNaS2 and resolve its cDNA and gene structures, which will allow us to investigate mNaS2 gene expression in vivo and determine its role in mammalian physiology.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-I gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-IA. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
An understanding of inheritance requires comprehension of genetic processes at all levels, from molecules to populations. Frequently genetics courses are separated into molecular and organismal genetics and students may fail to see the relationships between them. This is particularly true with human genetics, because of the difficulties in designing experimental approaches which are consistent with ethical restrictions, student abilities and background knowledge, and available time and materials. During 2005 we used analysis of single nucleotide polymorphisms (SNPs) in two genetic regions to enhance student learning and provide a practical experience in human genetics. Students scanned databases to discover SNPs in a gene of interest, used software to design PCR primers and a restriction enzyme based assay for the alleles, and carried out an analysis of the SNP on anonymous individual and family DNAs. The project occupied eight to ten hours per week for one semester, with some time spent in the laboratory and some spent in database searching, reading and writing the report. In completing their projects, students acquired a knowledge of Mendel’s first law (through looking at inheritance patterns), Mendel’s second law and the exceptions (the concepts of linkage and linkage disequilibrium), DNA structure (primer design and restriction enzyme analysis) and function (SNPs in coding and non-coding regions), population genetics and the statistical analysis of allele frequencies, genomics, bioinformatics and the ethical issues associated with the use of human samples. They also developed skills in presentation of results by publication and conference participation. Deficiencies in their understanding (for example of inheritance patterns, gene structure, statistical approaches and report writing) were detected and guidance given during the project. SNP analysis was found to be a powerful approach to enhance and integrate student understanding of genetic concepts.